TGR5 Attenuated Liver Ischemia-Reperfusion Injury by Activating the Keap1-Nrf2 Signaling Pathway in Mice

Hepatic ischemia/reperfusion injury (IRI) still remains an unavoidable problem in hepatectomy. The inflammatory response plays an important role in its pathogenesis. The plasma membrane-bound G protein-coupled bile acid receptor (TGR5), as one of G protein-coupled receptor (GPCR) families, has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inflammation 2021-06, Vol.44 (3), p.859-872
Hauptverfasser: Zhuang, Lin, Ding, Wenbin, Zhang, Qi, Ding, Wei, Xu, Xuezhong, Yu, Xiaolong, Xi, Dong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hepatic ischemia/reperfusion injury (IRI) still remains an unavoidable problem in hepatectomy. The inflammatory response plays an important role in its pathogenesis. The plasma membrane-bound G protein-coupled bile acid receptor (TGR5), as one of G protein-coupled receptor (GPCR) families, has been proved to serve a protective role in several liver diseases. However, the exact function of TGR5 in modulating IRI remains obscure. We injected wild mice with a small interfering RNA of TGR5 (si-TGR5) or TGR5 agonist (INT-777) and established liver partial warm ischemia/reperfusion model. The results showed that knockdown of TGR5 significantly aggravated hepatic tissue injury, but treatment with INT-777 could reverse it, as evidenced by serum ALT and AST tests, liver histological injury, cytokines expressions, liver immunohistochemical analysis, and TUNEL staining. The apoptosis-associated proteins were evaluated after reperfusion. Moreover, we used primary bone marrow–derived macrophages (BMDMs) to establish hypoxia/reoxygenation (H/R) model to verify the anti-inflammation effect of TGR5. In in vivo experiments, we used TGR5-siRNA and TGR5 agonist (INT-777) to determine that TGR5 significantly attenuated liver damage after IRI through activating the Keap1-Nrf2 pathway. In addition, we found that overexpression of INT-777-activated TGR5 could reduce oxidative stress and inflammatory response in H/R-induced BMDMs through regulation of Keap1-Nef2 pathway during in vitro experiment. Importantly, these results were completely reversed in si-TGR5 BMDMs. In conclusion, the results indicated that TGR5 could effectively alleviated inflammation response via accelerating the activation of Keap1-Nrf2 signaling pathway during hepatic IRI, which may be meaningful in reducing related inflammatory molecules and adjusting inherent immunity.
ISSN:0360-3997
1573-2576
DOI:10.1007/s10753-020-01382-y