Nonlinear Stability Control and λ-Bifurcation

Passive techniques for nonlinear stability control are presented for a model of fluidelastic instability. They employ the phenomena of λ-bifurcation and a generalization of it. λ-bifurcation occurs when a branch of flutter solutions bifurcates supercritically from a basic solution and terminates wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM J. Appl. Math.; (United States) 1987-12, Vol.47 (6), p.1163-1176
Hauptverfasser: Erneux, Thomas, Reiss, Edward L., Magnan, J. F., Jayakumar, P. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Passive techniques for nonlinear stability control are presented for a model of fluidelastic instability. They employ the phenomena of λ-bifurcation and a generalization of it. λ-bifurcation occurs when a branch of flutter solutions bifurcates supercritically from a basic solution and terminates with an infinite period orbit at a branch of divergence solutions which bifurcates subcritically from the basic solution. The shape of the bifurcation diagram then resembles the greek letter λ. When the system parameters are in the range where flutter occurs by λ-bifurcation, then as the flow velocity increases the flutter amplitude also increases, but the frequencies of the oscillations decrease to zero. This diminishes the damaging effects of structural fatigue by flutter, and permits the flow speed to exceed the critical flutter speed. If generalized λ-bifurcation occurs, then there is a jump transition from the flutter states to a divergence state with a substantially smaller amplitude, when the flow speed is sufficiently larger than the critical flutter speed.
ISSN:0036-1399
1095-712X
DOI:10.1137/0147078