Acid-Induced Gelation of Enzymatically and Nonenzymatically Cross-Linked CaseinsTexture Properties, and Microstructural Insights

Casein gels consist of a fractal organized network of aggregated casein particles. The gel texture thereby depends on the structure, the spatial distribution, and the interaction forces of the network’s elementary building blocks. The aim of this study was to explore the technofunctional consequence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2020-11, Vol.68 (47), p.13970-13981
Hauptverfasser: Hannß, Mariella, Böhm, Wendelin, Drichel, Sabine, Henle, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Casein gels consist of a fractal organized network of aggregated casein particles. The gel texture thereby depends on the structure, the spatial distribution, and the interaction forces of the network’s elementary building blocks. The aim of this study was to explore the technofunctional consequences of a possible specificity of Maillard reaction-induced cross-linking reactions on casein with respect to texture and microstructure of acid gels. Therefore, sodium caseinate glycated with lactose in the dry state (60 °C, a w 0.5) was compared with casein samples cross-linked with methylglyoxal, with glutaraldehyde, or via microbial transglutaminase, respectively, at similar levels of protein cross-linking as confirmed by size-exclusion chromatography under denaturing conditions. Casein gels prepared by acidification with glucono-δ-lactone were characterized concerning pH kinetics during gelation, mechanical texture properties under large deformation, and water-holding capacity, while viscometric properties of casein suspensions were obtained prior to gelation. The gel microstructure was captured by confocal laser scanning microscopy and evaluated by means of image texture analysis. All protein cross-linking reactions studied led to an enhanced gel strength which was accompanied by an increased interconnectivity of the gel network and a decrease in apparent pore sizes. Gels with more densely packed strands, as was the case for enzymatically modified casein, exhibited pronounced mechanical stability. The spontaneous destabilization of the gel network upon prolonged glycation reactions, which was not obviously displayed by microstructural features but connected to an increased viscosity and pronounced pseudoplastic flow of the unacidified suspension, suggests a limitation of particle rearrangements and the weakening of interparticle protein–protein interactions by additional structure attributes formed during the early Maillard reaction (glycoconjugation).
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.0c04445