Solvatochromic Photoluminescent Effects in All‐Inorganic Manganese(II)‐Based Perovskites by Highly Selective Solvent‐Induced Crystal‐to‐Crystal Phase Transformations

The development of lead‐free perovskite photoelectric materials has been an extensive focus in the recent years. Herein, a novel one‐dimensional (1D) lead‐free CsMnCl3(H2O)2 single crystal is reported with solvatochromic photoluminescence properties. Interestingly, after contact with N,N‐dimethylace...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2021-02, Vol.60 (7), p.3699-3707
Hauptverfasser: Xiao, Hui, Dang, Peipei, Yun, Xiaohan, Li, Guogang, Wei, Yi, Xiao, Xiao, Zhao, Yajie, Molokeev, Maxim S., Cheng, Ziyong, Lin, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of lead‐free perovskite photoelectric materials has been an extensive focus in the recent years. Herein, a novel one‐dimensional (1D) lead‐free CsMnCl3(H2O)2 single crystal is reported with solvatochromic photoluminescence properties. Interestingly, after contact with N,N‐dimethylacetamide (DMAC) or N,N‐dimethylformamide (DMF), the crystal structure can transform from 1D CsMnCl3(H2O)2 to 0D Cs3MnCl5 and finally transform into 0D Cs2MnCl4(H2O)2. The solvent‐induced crystal‐to‐crystal phase transformations are accompanied by loss and regaining of water of crystallization, leading to the change of the coordination number of Mn2+. Correspondingly, the luminescence changes from red to bright green and finally back to red emission. By fabricating a test‐paper containing CsMnCl3(H2O)2, DMAC and DMF can be detected quickly with a response time of less than one minute. These results can expand potential applications for low‐dimensional lead‐free perovskites. CsMnCl3(H2O)2 single crystals exhibit solvatochromic photoluminescence. After contact with DMAC or DMF, crystal‐to‐crystal phase transformations occur, accompanied by changes of the emission between red and green, caused by the change of crystal field strength of Mn2+ sites during the crystal transformations. This work inspires potential applications for lead‐free perovskites.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.202012383