Simultaneous control of multiple functions of bionic hand prostheses: Performance and robustness in end users

Myoelectric hand prostheses are usually controlled with two bipolar electrodes located on the flexor and extensor muscles of the residual limb. With clinically established techniques, only one function can be controlled at a time. This is cumbersome and limits the benefit of additional functions off...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science robotics 2018-06, Vol.3 (19)
Hauptverfasser: Hahne, Janne M, Schweisfurth, Meike A, Koppe, Mario, Farina, Dario
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Myoelectric hand prostheses are usually controlled with two bipolar electrodes located on the flexor and extensor muscles of the residual limb. With clinically established techniques, only one function can be controlled at a time. This is cumbersome and limits the benefit of additional functions offered by modern prostheses. Extensive research has been conducted on more advanced control techniques, but the clinical impact has been limited, mainly due to the lack of reliability in real-world conditions. We implemented a regression-based control approach that allows for simultaneous and proportional control of two degrees of freedom and evaluated it on five prosthetic end users. In the evaluation of tasks mimicking daily life activities, we included factors that limit reliability, such as tests in different arm positions and on different days. The regression approach was robust over multiple days and only slightly affected by changing in the arm position. Additionally, the regression approach outperformed two clinical control approaches in most conditions.
ISSN:2470-9476
2470-9476
DOI:10.1126/scirobotics.aat3630