A bilinear convolutional neural network for lung nodules classification on CT images

Purpose Lung cancer is the most frequent cancer worldwide and is the leading cause of cancer-related deaths. Its early detection and treatment at the stage of a lung nodule improve the prognosis. In this study was proposed a new classification approach named bilinear convolutional neural network (BC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for computer assisted radiology and surgery 2021, Vol.16 (1), p.91-101
Hauptverfasser: Mastouri, Rekka, Khlifa, Nawres, Neji, Henda, Hantous-Zannad, Saoussen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Lung cancer is the most frequent cancer worldwide and is the leading cause of cancer-related deaths. Its early detection and treatment at the stage of a lung nodule improve the prognosis. In this study was proposed a new classification approach named bilinear convolutional neural network (BCNN) for the classification of lung nodules on CT images. Methods Convolutional neural network (CNN) is considered as the leading model in deep learning and is highly recommended for the design of computer-aided diagnosis systems thanks to its promising results on medical image analysis. The proposed BCNN scheme consists of two-stream CNNs (VGG16 and VGG19) as feature extractors followed by a support vector machine (SVM) classifier for false positive reduction. Series of experiments are performed by introducing the bilinear vector features extracted from three BCNN combinations into various types of SVMs that we adopted instead of the original softmax to determine the most suitable classifier for our study. Results The method performance was evaluated on 3186 images from the public LUNA16 database. We found that the BCNN [VGG16, VGG19] combination with and without SVM surpassed the [VGG16]2 and [VGG19]2 architectures, achieved an accuracy rate of 91.99% against 91.84% and 90.58%, respectively, and an area under the curve (AUC) rate of 95.9% against 94.8% and 94%, respectively. Conclusion The proposed method improved the outcomes of conventional CNN-based architectures and showed promising and satisfying results, compared to other works, with an affordable complexity. We believe that the proposed BCNN can be used as an assessment tool for radiologists to make a precise analysis of lung nodules and an early diagnosis of lung cancers.
ISSN:1861-6410
1861-6429
DOI:10.1007/s11548-020-02283-z