Aqueous Suspensions of Cellulose Oligomer Nanoribbons for Growth and Natural Filtration-Based Separation of Cancer Spheroids
In vitro growth of cancer spheroids (CSs) and the subsequent separation of CSs from a 2D or 3D cell culture system are important for fundamental cancer studies and cancer drug screening. Although biopolymer-based or synthetic hydrogels are suitable candidates to be used as 3D cell culture scaffolds,...
Gespeichert in:
Veröffentlicht in: | Langmuir 2020-11, Vol.36 (46), p.13890-13898 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In vitro growth of cancer spheroids (CSs) and the subsequent separation of CSs from a 2D or 3D cell culture system are important for fundamental cancer studies and cancer drug screening. Although biopolymer-based or synthetic hydrogels are suitable candidates to be used as 3D cell culture scaffolds, alternatives with better processing capabilities are still required to set up cell culture microenvironment. In this study, we show that aqueous suspensions of crystalline nanoribbons composed of cellulose oligomers have a potential for CS growth and separation. The nanoribbon suspensions in serum-containing cell culture media fixed single cancer cells and CSs with large sizes in a 3D space, leading to suspension cultures for CS growth corresponding to culture time. Well-grown CSs were easily separated from the suspensions by natural filtration using a mesh filter with a suitable pore size. Cell viability tests revealed negligible cytotoxicity of the nanoribbons. In addition, physical damages to CSs by the separation procedures were negligible. Stable suspensions of biocompatible nanomaterials will thus provide novel microenvironments for growth and separation of diverse cell aggregates. |
---|---|
ISSN: | 0743-7463 1520-5827 |
DOI: | 10.1021/acs.langmuir.0c02294 |