The inflammation and reactive oxygen species regulated by Nrf2 and NF-κB signaling pathways in 630-nm light-emitting diode irradiation treated THP-1 monocytes/macrophages

Because of a large number of macrophages and its secreted pro-inflammatory factors in the synovial fluid of patients with rheumatoid arthritis, the present study aimed to investigate the effect and mechanism of 630-nm LED exposure on monocytes/macrophages and its anti-inflammatory effect. The THP-1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lasers in medical science 2021-09, Vol.36 (7), p.1411-1419
Hauptverfasser: Li, Yujun, Wei, Shuang, Zhang, Kaibo, Fang, Yong, Liu, Hailiang, Jin, Zhanfeng, Guo, Qingxia, He, Jun, Song, Wuqi, Zhang, Fengmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because of a large number of macrophages and its secreted pro-inflammatory factors in the synovial fluid of patients with rheumatoid arthritis, the present study aimed to investigate the effect and mechanism of 630-nm LED exposure on monocytes/macrophages and its anti-inflammatory effect. The THP-1 monocytes and PMA-induced THP-1 macrophages (THP-1 macrophages) were employed and irradiated by 630-nm LED for different time and times, and then measure the pro-inflammatory cytokines production by RT-qPCR and Milliplex MAP Multiplex assay, the proteins involved in inflammation pathway and reactive oxygen species (ROS) levels in the cells were detected by Western blot and DCFH-DA method. The exposure dose of red LED (15.3 J/cm 2 , 30.6 J/cm 2 ) were determined as no-influence on the cell proliferation, the pro-inflammatory factors TNF-α and IL-1β mRNAs, and secretions in supernatant of THP-1 macrophages were significantly decreased after LED exposure. The ROS production was blocked in THP-1 monocytes and THP-1 macrophages after treatment of LED. Finally, the phosphorylated NF-κB proteins which involved in inflammation pathway significantly decreased, and its inhibitors Nrf2 were slightly upregulated. The effects of LED anti-inflammation response are dependent on the mechanism of inhibiting ROS level and regulating NF-κB signaling pathways by increasing Nrf2 expression in the cells. It is suggested that 630-nm LED could decrease pro-inflammation in immune cells, and it may be a beneficial adjunct therapy in relieving inflammation of patients with rheumatoid arthritis.
ISSN:0268-8921
1435-604X
DOI:10.1007/s10103-020-03172-2