Pickering emulsion approach for fabrication of waterborne cross-linkable polydimethylsiloxane coatings with high mechanical performance
[Display omitted] The Pickering emulsion approach has been frequently employed to fabricate various emulsions. However, the direct formation of cross-linked polymer films from Pickering emulsions and double functions (emulsified and mechanical reinforcement) of Pickering agents have not been suffici...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2021-03, Vol.585, p.627-639 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
The Pickering emulsion approach has been frequently employed to fabricate various emulsions. However, the direct formation of cross-linked polymer films from Pickering emulsions and double functions (emulsified and mechanical reinforcement) of Pickering agents have not been sufficiently reported.
Fumed silica was co-modified with vinyltrimethoxysilane (VTMS) and hexamethyl disilylamine (HMDS) and was further adopted to emulsify vinyl or hydrogen dimethicone. The as-obtained Pickering emulsions were mixed with Karstedt catalyst capsules to produce one-component waterborne cross-linkable polydimethylsiloxane (PDMS) coatings that were subsequently transformed into elastic films after drying at ambient temperature.
The co-modification of fumed silica with VTMS/HMDS is shown to balance the Pickering emulsion effect and film-forming ability of the coatings. Greater amounts of grafted VTMS/HMDS or higher modified silica dosages demonstrated better Pickering emulsion effects. Nevertheless, because Pickering agents hinder the coalescence of silicone oil droplets, the appropriate modified silica concentration is crucial for achieving the highest cross-link density and thus the highest mechanical strength. The grafted CC groups can endow the modified silica with hydrosilylation reactivity and can thus additionally contribute to the mechanical performance of PDMS film. In addition, the Pickering emulsion approach is shown to be superior to the traditional emulsion approach for acquiring waterborne coatings with high mechanical performance. |
---|---|
ISSN: | 0021-9797 1095-7103 |
DOI: | 10.1016/j.jcis.2020.10.042 |