Characterization of two sugar transporters responsible for efficient xylose uptake in an oleaginous yeast Candida tropicalis SY005
Microbial conversion of lignocellulosic feedstock to the target bioproduct requires efficient assimilation of its constituent sugars, a large part of which comprises of glucose and xylose. This study aims to identify and characterize sugar transporters capable of xylose uptake in an oleaginous strai...
Gespeichert in:
Veröffentlicht in: | Archives of biochemistry and biophysics 2020-11, Vol.695, p.108645-108645, Article 108645 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Microbial conversion of lignocellulosic feedstock to the target bioproduct requires efficient assimilation of its constituent sugars, a large part of which comprises of glucose and xylose. This study aims to identify and characterize sugar transporters capable of xylose uptake in an oleaginous strain of the industrially relevant yeast Candida tropicalis. In silico database mining resulted in two sugar transporter proteins- CtStp1 and CtStp2, containing conserved amino acid residues and motifs that have been previously reported to be involved in xylose transport in other organisms. Several softwares predicted the likelihood of 10–12 transmembrane (TM) helices to be present in both the Stps, while molecular modelling showed 12 TM helices that were organized into a typical structure found in the major facilitator superfamily of transporters. Docking with different sugars also predicted favorable interactions. Heterologous expression in a Saccharomyces cerevisiae strain harboring functional xylose metabolic genes validated the broad substrate specificity of the two Stps. Each transporter supported prominent growth of recombinant S. cerevisiae strains on six sugars including xylose at various concentrations. Expression of CtSTP1 and CtSTP2 along with the xylose metabolic genes in yeast transformants grown in presence of xylose was confirmed by transcript detection. Growth curve and sugar consumption profiles revealed uptake of both glucose and xylose simultaneously by the recombinant yeast strains, though CtStp1 showed relatively less effect of glucose repression in mixed sugars and was a better transporter of xylose than CtStp2. Such glucose-xylose utilizing efficient transporters can be effective tools for developing co-fermenting yeasts through genetic engineering in future, with noteworthy applications in renewable biomass utilization.
•Two putative sugar transporter proteins have been identified in the yeast Candida tropicalis.•Molecular modelling of each transporter identified a domain of 12 transmembrane helices responsible for sugar binding.•Conserved amino acids were predicted in transporter-sugar interaction in silico.•Growth of Saccharomyces cerevisiae transformants on sugars validated broad substrate specificity of each transporter.•Yeast transformants showed efficient utilization of both glucose and xylose simultaneously. |
---|---|
ISSN: | 0003-9861 1096-0384 |
DOI: | 10.1016/j.abb.2020.108645 |