Inhibition of transient receptor potential vanilloid 1 (TRPV1) channel regulates chikungunya virus infection in macrophages

Chikungunya virus (CHIKV), a virus that induces pathogenic inflammatory host immune responses, is re-emerging worldwide, and there are currently no established antiviral control measures. Transient receptor potential vanilloid 1 (TRPV1), a non-selective Ca 2+ -permeable ion channel, has been found t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of virology 2021, Vol.166 (1), p.139-155
Hauptverfasser: Sanjai Kumar, P., Nayak, Tapas K., Mahish, Chandan, Sahoo, Subhransu S., Radhakrishnan, Anukrishna, De, Saikat, Datey, Ankita, Sahu, Ram P., Goswami, Chandan, Chattopadhyay, Soma, Chattopadhyay, Subhasis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Chikungunya virus (CHIKV), a virus that induces pathogenic inflammatory host immune responses, is re-emerging worldwide, and there are currently no established antiviral control measures. Transient receptor potential vanilloid 1 (TRPV1), a non-selective Ca 2+ -permeable ion channel, has been found to regulate various host inflammatory responses including several viral infections. Immune responses to CHIKV infection in host macrophages have been reported recently. However, the possible involvement of TRPV1 during CHIKV infection in host macrophages has not been studied. Here, we investigated the possible role of TRPV1 in CHIKV infection of the macrophage cell line RAW 264.7. It was found that CHIKV infection upregulates TRPV1 expression in macrophages. To confirm this observation, the TRPV1-specific modulators 5ˊ-iodoresiniferatoxin (5ˊ-IRTX, a TRPV1 antagonist) and resiniferatoxin (RTX, a TRPV1 agonist) were used. Our results indicated that TRPV1 inhibition leads to a reduction in CHIKV infection, whereas TRPV1 activation significantly enhances CHIKV infection. Using a plaque assay and a time-of-addition assay, it was observed that functional modulation of TRPV1 affects the early stages of the viral lifecycle in RAW 264.7 cells. Moreover, CHIKV infection was found to induce of pNF-κB (p65) expression and nuclear localization. However, both activation and inhibition of TRPV1 were found to enhance the expression and nuclear localization of pNF-κB (p65) and production of pro-inflammatory TNF and IL-6 during CHIKV infection. In addition, it was demonstrated by Ca 2+ imaging that TRPV1 regulates Ca 2+ influx during CHIKV infection. Hence, the current findings highlight a potentially important regulatory role of TRPV1 during CHIKV infection in macrophages. This study might also have broad implications in the context of other viral infections as well.
ISSN:0304-8608
1432-8798
DOI:10.1007/s00705-020-04852-8