Deep learning modeling approach for metasurfaces with high degrees of freedom

Metasurfaces have shown promising potentials in shaping optical wavefronts while remaining compact compared to bulky geometric optics devices. The design of meta-atoms, the fundamental building blocks of metasurfaces, typically relies on trial and error to achieve target electromagnetic responses. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-10, Vol.28 (21), p.31932-31942
Hauptverfasser: An, Sensong, Zheng, Bowen, Shalaginov, Mikhail Y., Tang, Hong, Li, Hang, Zhou, Li, Ding, Jun, Agarwal, Anuradha Murthy, Rivero-Baleine, Clara, Kang, Myungkoo, Richardson, Kathleen A., Gu, Tian, Hu, Juejun, Fowler, Clayton, Zhang, Hualiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Metasurfaces have shown promising potentials in shaping optical wavefronts while remaining compact compared to bulky geometric optics devices. The design of meta-atoms, the fundamental building blocks of metasurfaces, typically relies on trial and error to achieve target electromagnetic responses. This process includes the characterization of an enormous amount of meta-atom designs with varying physical and geometric parameters, which demands huge computational resources. In this paper, a deep learning-based metasurface/meta-atom modeling approach is introduced to significantly reduce the characterization time while maintaining accuracy. Based on a convolutional neural network (CNN) structure, the proposed deep learning network is able to model meta-atoms with nearly freeform 2D patterns and different lattice sizes, material refractive indices and thicknesses. Moreover, the presented approach features the capability of predicting a meta-atom’s wide spectrum response in the timescale of milliseconds, attractive for applications necessitating fast on-demand design and optimization of a meta-atom/metasurface.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.401960