Numerical techniques for conformal mapping onto a rectangle
This paper is concerned with the problem of determining approximations to the function F which maps conformally a simply-connected domain Ω onto a rectangle R, so that four specified points on ∂Ω are mapped respectively onto the four vertices of R. In particular, we study the following two classes o...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 1987, Vol.20, p.349-358 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the problem of determining approximations to the function
F which maps conformally a simply-connected domain Ω onto a rectangle
R, so that four specified points on ∂Ω are mapped respectively onto the four vertices of
R. In particular, we study the following two classes of methods for the mapping of domains of the form
Ω≔ {z = x + iy:00 < x < 1, τ
1(x) < y < τ
2(x)}
. (i) Methods which approximate
F: Ω →
R by
F
̃
= S ∘
F
̃
, where F̃ is an approximation to the conformal map of Ω onto the unit disc, and
S is a simple Schwarz-Christoffel transformation. (ii) Methods based on approximating the conformal map of a certain symmetric doubly-connected domain onto a circular annulus. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/0377-0427(87)90152-X |