Numerical techniques for conformal mapping onto a rectangle

This paper is concerned with the problem of determining approximations to the function F which maps conformally a simply-connected domain Ω onto a rectangle R, so that four specified points on ∂Ω are mapped respectively onto the four vertices of R. In particular, we study the following two classes o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics 1987, Vol.20, p.349-358
Hauptverfasser: Papamichael, N., Kokkinos, C.A., Warby, M.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the problem of determining approximations to the function F which maps conformally a simply-connected domain Ω onto a rectangle R, so that four specified points on ∂Ω are mapped respectively onto the four vertices of R. In particular, we study the following two classes of methods for the mapping of domains of the form Ω≔ {z = x + iy:00 < x < 1, τ 1(x) < y < τ 2(x)} . (i) Methods which approximate F: Ω → R by F ̃ = S ∘ F ̃ , where F̃ is an approximation to the conformal map of Ω onto the unit disc, and S is a simple Schwarz-Christoffel transformation. (ii) Methods based on approximating the conformal map of a certain symmetric doubly-connected domain onto a circular annulus.
ISSN:0377-0427
1879-1778
DOI:10.1016/0377-0427(87)90152-X