How different freezing morphologies of impacting droplets form

[Display omitted] Freezing morphologies of impacting water droplets depend on the interaction between droplet spreading and solidification. The existing studies showed that the shape of frozen droplets mostly is of spherical cap with a singular tip, because of much shorter timescale of the droplet s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2021-02, Vol.584, p.403-410
Hauptverfasser: Fang, Wen-Zhen, Zhu, Fangqi, Tao, Wen-Quan, Yang, Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue
container_start_page 403
container_title Journal of colloid and interface science
container_volume 584
creator Fang, Wen-Zhen
Zhu, Fangqi
Tao, Wen-Quan
Yang, Chun
description [Display omitted] Freezing morphologies of impacting water droplets depend on the interaction between droplet spreading and solidification. The existing studies showed that the shape of frozen droplets mostly is of spherical cap with a singular tip, because of much shorter timescale of the droplet spreading than that of the solidification. Here, we create the experimental conditions of extended droplet spreading and greatly enhanced heat transfer for fast solidification, thereby allowing to study such droplet freezing process under the strong coupling of the droplet spreading and solidification. We design experiments that a room-temperature water droplet impacts on a subcooled superhydrophilic surface in an enclosure chamber filled with nitrogen gas. We thoroughly investigate the freezing processes of impacting droplets under the effects of impact velocity and substrate temperature. Both the droplet impact dynamics and solidification are studied with a high-speed camera. We observed five different freezing morphologies which depend on the droplet impact velocity and substrate temperature. We found that the formation of diverse morphologies results from the competitive timescales related to droplet solidification and impact hydrodynamics. We also develop a phase diagram based on scaling analysis and show how freezing morphologies are controlled by droplet impact and freezing related timescales.
doi_str_mv 10.1016/j.jcis.2020.09.119
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2454158903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021979720313084</els_id><sourcerecordid>2454158903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-c3c0657a93828f4ea478d9b6fef66a6e26950641510ad8966225be74699415d63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6BzxIj15aJ2mTNiCCLH7Bghc9h246WVPapiZdRX-9Lbt69DIDM8-8MA8h5xQSClRc1UmtbUgYMEhAJpTKAzKnIHmcU0gPyRyA0VjmMp-RkxBqAEo5l8dklqYgaSH4nNw8us-ossagx26IjEf8tt0map3v31zjNhZD5Exk277Uw7SpvOsbHEJknG9PyZEpm4Bn-74gr_d3L8vHePX88LS8XcU65WIYqwbB81KmBStMhmWWF5VcC4NGiFIgE5KDyCinUFaFFIIxvsY8E1KOw0qkC3K5y-29e99iGFRrg8amKTt026BYxkewkJCOKNuh2rsQPBrVe9uW_ktRUJM3VavJm5q8KZBq9DYeXezzt-sWq7-TX1EjcL0DcPzyw6JXQVvsNFbWox5U5ex_-T_MLH2e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454158903</pqid></control><display><type>article</type><title>How different freezing morphologies of impacting droplets form</title><source>Elsevier ScienceDirect Journals</source><creator>Fang, Wen-Zhen ; Zhu, Fangqi ; Tao, Wen-Quan ; Yang, Chun</creator><creatorcontrib>Fang, Wen-Zhen ; Zhu, Fangqi ; Tao, Wen-Quan ; Yang, Chun</creatorcontrib><description>[Display omitted] Freezing morphologies of impacting water droplets depend on the interaction between droplet spreading and solidification. The existing studies showed that the shape of frozen droplets mostly is of spherical cap with a singular tip, because of much shorter timescale of the droplet spreading than that of the solidification. Here, we create the experimental conditions of extended droplet spreading and greatly enhanced heat transfer for fast solidification, thereby allowing to study such droplet freezing process under the strong coupling of the droplet spreading and solidification. We design experiments that a room-temperature water droplet impacts on a subcooled superhydrophilic surface in an enclosure chamber filled with nitrogen gas. We thoroughly investigate the freezing processes of impacting droplets under the effects of impact velocity and substrate temperature. Both the droplet impact dynamics and solidification are studied with a high-speed camera. We observed five different freezing morphologies which depend on the droplet impact velocity and substrate temperature. We found that the formation of diverse morphologies results from the competitive timescales related to droplet solidification and impact hydrodynamics. We also develop a phase diagram based on scaling analysis and show how freezing morphologies are controlled by droplet impact and freezing related timescales.</description><identifier>ISSN: 0021-9797</identifier><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2020.09.119</identifier><identifier>PMID: 33091865</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Droplet freezing ; Droplet spreading ; Freezing morphology ; Impacting droplet</subject><ispartof>Journal of colloid and interface science, 2021-02, Vol.584, p.403-410</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-c3c0657a93828f4ea478d9b6fef66a6e26950641510ad8966225be74699415d63</citedby><cites>FETCH-LOGICAL-c356t-c3c0657a93828f4ea478d9b6fef66a6e26950641510ad8966225be74699415d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021979720313084$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33091865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Wen-Zhen</creatorcontrib><creatorcontrib>Zhu, Fangqi</creatorcontrib><creatorcontrib>Tao, Wen-Quan</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><title>How different freezing morphologies of impacting droplets form</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>[Display omitted] Freezing morphologies of impacting water droplets depend on the interaction between droplet spreading and solidification. The existing studies showed that the shape of frozen droplets mostly is of spherical cap with a singular tip, because of much shorter timescale of the droplet spreading than that of the solidification. Here, we create the experimental conditions of extended droplet spreading and greatly enhanced heat transfer for fast solidification, thereby allowing to study such droplet freezing process under the strong coupling of the droplet spreading and solidification. We design experiments that a room-temperature water droplet impacts on a subcooled superhydrophilic surface in an enclosure chamber filled with nitrogen gas. We thoroughly investigate the freezing processes of impacting droplets under the effects of impact velocity and substrate temperature. Both the droplet impact dynamics and solidification are studied with a high-speed camera. We observed five different freezing morphologies which depend on the droplet impact velocity and substrate temperature. We found that the formation of diverse morphologies results from the competitive timescales related to droplet solidification and impact hydrodynamics. We also develop a phase diagram based on scaling analysis and show how freezing morphologies are controlled by droplet impact and freezing related timescales.</description><subject>Droplet freezing</subject><subject>Droplet spreading</subject><subject>Freezing morphology</subject><subject>Impacting droplet</subject><issn>0021-9797</issn><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMo7rr6BzxIj15aJ2mTNiCCLH7Bghc9h246WVPapiZdRX-9Lbt69DIDM8-8MA8h5xQSClRc1UmtbUgYMEhAJpTKAzKnIHmcU0gPyRyA0VjmMp-RkxBqAEo5l8dklqYgaSH4nNw8us-ossagx26IjEf8tt0map3v31zjNhZD5Exk277Uw7SpvOsbHEJknG9PyZEpm4Bn-74gr_d3L8vHePX88LS8XcU65WIYqwbB81KmBStMhmWWF5VcC4NGiFIgE5KDyCinUFaFFIIxvsY8E1KOw0qkC3K5y-29e99iGFRrg8amKTt026BYxkewkJCOKNuh2rsQPBrVe9uW_ktRUJM3VavJm5q8KZBq9DYeXezzt-sWq7-TX1EjcL0DcPzyw6JXQVvsNFbWox5U5ex_-T_MLH2e</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Fang, Wen-Zhen</creator><creator>Zhu, Fangqi</creator><creator>Tao, Wen-Quan</creator><creator>Yang, Chun</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20210215</creationdate><title>How different freezing morphologies of impacting droplets form</title><author>Fang, Wen-Zhen ; Zhu, Fangqi ; Tao, Wen-Quan ; Yang, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-c3c0657a93828f4ea478d9b6fef66a6e26950641510ad8966225be74699415d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Droplet freezing</topic><topic>Droplet spreading</topic><topic>Freezing morphology</topic><topic>Impacting droplet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Wen-Zhen</creatorcontrib><creatorcontrib>Zhu, Fangqi</creatorcontrib><creatorcontrib>Tao, Wen-Quan</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Wen-Zhen</au><au>Zhu, Fangqi</au><au>Tao, Wen-Quan</au><au>Yang, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How different freezing morphologies of impacting droplets form</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2021-02-15</date><risdate>2021</risdate><volume>584</volume><spage>403</spage><epage>410</epage><pages>403-410</pages><issn>0021-9797</issn><eissn>1095-7103</eissn><abstract>[Display omitted] Freezing morphologies of impacting water droplets depend on the interaction between droplet spreading and solidification. The existing studies showed that the shape of frozen droplets mostly is of spherical cap with a singular tip, because of much shorter timescale of the droplet spreading than that of the solidification. Here, we create the experimental conditions of extended droplet spreading and greatly enhanced heat transfer for fast solidification, thereby allowing to study such droplet freezing process under the strong coupling of the droplet spreading and solidification. We design experiments that a room-temperature water droplet impacts on a subcooled superhydrophilic surface in an enclosure chamber filled with nitrogen gas. We thoroughly investigate the freezing processes of impacting droplets under the effects of impact velocity and substrate temperature. Both the droplet impact dynamics and solidification are studied with a high-speed camera. We observed five different freezing morphologies which depend on the droplet impact velocity and substrate temperature. We found that the formation of diverse morphologies results from the competitive timescales related to droplet solidification and impact hydrodynamics. We also develop a phase diagram based on scaling analysis and show how freezing morphologies are controlled by droplet impact and freezing related timescales.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33091865</pmid><doi>10.1016/j.jcis.2020.09.119</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9797
ispartof Journal of colloid and interface science, 2021-02, Vol.584, p.403-410
issn 0021-9797
1095-7103
language eng
recordid cdi_proquest_miscellaneous_2454158903
source Elsevier ScienceDirect Journals
subjects Droplet freezing
Droplet spreading
Freezing morphology
Impacting droplet
title How different freezing morphologies of impacting droplets form
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A46%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20different%20freezing%20morphologies%20of%20impacting%20droplets%20form&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Fang,%20Wen-Zhen&rft.date=2021-02-15&rft.volume=584&rft.spage=403&rft.epage=410&rft.pages=403-410&rft.issn=0021-9797&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2020.09.119&rft_dat=%3Cproquest_cross%3E2454158903%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2454158903&rft_id=info:pmid/33091865&rft_els_id=S0021979720313084&rfr_iscdi=true