How different freezing morphologies of impacting droplets form

[Display omitted] Freezing morphologies of impacting water droplets depend on the interaction between droplet spreading and solidification. The existing studies showed that the shape of frozen droplets mostly is of spherical cap with a singular tip, because of much shorter timescale of the droplet s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2021-02, Vol.584, p.403-410
Hauptverfasser: Fang, Wen-Zhen, Zhu, Fangqi, Tao, Wen-Quan, Yang, Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Freezing morphologies of impacting water droplets depend on the interaction between droplet spreading and solidification. The existing studies showed that the shape of frozen droplets mostly is of spherical cap with a singular tip, because of much shorter timescale of the droplet spreading than that of the solidification. Here, we create the experimental conditions of extended droplet spreading and greatly enhanced heat transfer for fast solidification, thereby allowing to study such droplet freezing process under the strong coupling of the droplet spreading and solidification. We design experiments that a room-temperature water droplet impacts on a subcooled superhydrophilic surface in an enclosure chamber filled with nitrogen gas. We thoroughly investigate the freezing processes of impacting droplets under the effects of impact velocity and substrate temperature. Both the droplet impact dynamics and solidification are studied with a high-speed camera. We observed five different freezing morphologies which depend on the droplet impact velocity and substrate temperature. We found that the formation of diverse morphologies results from the competitive timescales related to droplet solidification and impact hydrodynamics. We also develop a phase diagram based on scaling analysis and show how freezing morphologies are controlled by droplet impact and freezing related timescales.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2020.09.119