Photothermoelectric SnTe Photodetector with Broad Spectral Response and High On/Off Ratio

A broadband photodetector with high performance is highly desirable for the optoelectric and sensing application. Herein, we report a “photo-thermo-electric” (PTE) detector based on an ultrathin SnTe film. The (001)-oriented SnTe films with the wafer size scale are epitaxially grown on the surface o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-11, Vol.12 (44), p.49830-49839
Hauptverfasser: Liu, Hui, Liu, Yunjie, Dong, Shichang, Xu, Hanyang, Wu, Yupeng, Hao, Lanzhong, Cao, Banglin, Li, Mingjie, Wang, Zegao, Han, Zhide, Yan, Keyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A broadband photodetector with high performance is highly desirable for the optoelectric and sensing application. Herein, we report a “photo-thermo-electric” (PTE) detector based on an ultrathin SnTe film. The (001)-oriented SnTe films with the wafer size scale are epitaxially grown on the surface of sodium chloride crystals by a scalable sputtering method. Due to the giant PTE effect under laser spot excitation on the asymmetric position between two terminals, a built-in electrical field is produced to drive bulk carriers for a self-powered photodetector, leading to a broad spectral response in the wavelength range from 404 nm to 10.6 μm far beyond the limitation of the energy band gap. Significantly, the photodetector displays a high on/off photoswitching ratio of over 105 with a suppressed dark current, which is 4–5 orders of magnitude higher than that of other reported SnTe-based detectors. Under zero external bias, the device yields the highest detectivity of ∼1.3 × 1010 cm Hz1/2 W–1 with a corresponding responsivity of ∼3.9 mA W–1 and short rising/falling times of ∼78/84 ms. Furthermore, the photodetector transferred onto the flexible template exhibits excellent mechanical flexibility over 300 bending cycles. These findings offer feasible strategies toward designing and developing low-power-consumption wearable optoelectronics with competitive performance.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c15639