Using artificial intelligence tools in answering important clinical questions: The KEYNOTE-183 multiple myeloma experience
The phase III, randomized, active-controlled, multicenter, open-label KEYNOTE-183 study (NCT02576977) evaluating pomalidomide and low dose dexamethasone (standard-of-care [SOC]) with or without pembrolizumab in patients with refractory or relapsed and refractory multiple myeloma (rrMM) was placed on...
Gespeichert in:
Veröffentlicht in: | Contemporary clinical trials 2020-12, Vol.99, p.106179-106179, Article 106179 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106179 |
---|---|
container_issue | |
container_start_page | 106179 |
container_title | Contemporary clinical trials |
container_volume | 99 |
creator | Liao, Jason J.Z. Farooqui, Mohammed Z.H. Marinello, Patricia Hartzel, Jonathan Anderson, Keaven Ma, Junshui Gause, Christine K. |
description | The phase III, randomized, active-controlled, multicenter, open-label KEYNOTE-183 study (NCT02576977) evaluating pomalidomide and low dose dexamethasone (standard-of-care [SOC]) with or without pembrolizumab in patients with refractory or relapsed and refractory multiple myeloma (rrMM) was placed on full clinical hold by the US FDA on July 03, 2017 due to an imbalance in the number of deaths between arms. Clinically-led subgroup analyses are typically used to shed light on clinical findings. However, this approach is not always successful. We propose a systematic approach using the artificial intelligence tools to identifying risk factors and subgroups contributing to the overall death (prognostic) or to the excess death observed in the pembrolizumab plus SOC arm (predictive) of the KEYNOTE-183 study. In KEYNOTE-183, with a data cutoff date of June 02, 2017, we identified plasmacytoma as a prognostic factor, and ECOG performance status as a predictive factor of death. In addition, a qualitative interaction was observed between ECOG performance status and the treatment arm. The subsequent subgroup analysis based on ECOG performance status confirmed that more deaths were associated with pembrolizumab plus SOC versus SOC alone in patients with ECOG performance status 1.
•This systematic approach identifies prognostic and predictive risk factors or subgroups contributing to the imbalance in survival observed in KEYNOTE-183.•Use of machine learning tools such as the random forest successfully identified ECOG performance status as a predictive survival factor |
doi_str_mv | 10.1016/j.cct.2020.106179 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2453686572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1551714420302573</els_id><sourcerecordid>2453686572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-64db94ea39112f8ae08e34ef4b4f7dbcedde6b50239df9f5b4d1c181683ee8d53</originalsourceid><addsrcrecordid>eNp9kM1O3DAUha2qqFDaB-gGedlNBjv-mQRWCE1bBCqbYdGV5dg31CMnTm0PBZ6-zgxlyco_OufTvR9CXyhZUELl6WZhTF7UpJ7fki7bd-iICtFWNWHk_e5OqyXl_BB9TGlDCJNCig_okDHSSCraI_R8l9x4j3XMrnfGaY_dmMF7dw-jAZxD8Kl8YT2mvxDnqBumELMeMzbejc6Uyp8tpOzCmM7w-jfg69Wvn7frVUUbhoetz27ygIcn8GHQGB6nwpnhn9BBr32Czy_nMbr7tlpf_qhubr9fXV7cVIYJlivJbddy0KyltO4bDaQBxqHnHe-XtjNgLchOkJq1tm970XFLDW2obBhAYwU7Rl_33CmG3aRqcMmUHfUIYZtUzQWTjRTLukTpPmpiSClCr6boBh2fFCVqVq42qihXs3K1V146Jy_4bTeAfW38d1wC5_sAlCUfHESVzE6AdREKzAb3Bv4fGfKTpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453686572</pqid></control><display><type>article</type><title>Using artificial intelligence tools in answering important clinical questions: The KEYNOTE-183 multiple myeloma experience</title><source>Access via ScienceDirect (Elsevier)</source><creator>Liao, Jason J.Z. ; Farooqui, Mohammed Z.H. ; Marinello, Patricia ; Hartzel, Jonathan ; Anderson, Keaven ; Ma, Junshui ; Gause, Christine K.</creator><creatorcontrib>Liao, Jason J.Z. ; Farooqui, Mohammed Z.H. ; Marinello, Patricia ; Hartzel, Jonathan ; Anderson, Keaven ; Ma, Junshui ; Gause, Christine K.</creatorcontrib><description>The phase III, randomized, active-controlled, multicenter, open-label KEYNOTE-183 study (NCT02576977) evaluating pomalidomide and low dose dexamethasone (standard-of-care [SOC]) with or without pembrolizumab in patients with refractory or relapsed and refractory multiple myeloma (rrMM) was placed on full clinical hold by the US FDA on July 03, 2017 due to an imbalance in the number of deaths between arms. Clinically-led subgroup analyses are typically used to shed light on clinical findings. However, this approach is not always successful. We propose a systematic approach using the artificial intelligence tools to identifying risk factors and subgroups contributing to the overall death (prognostic) or to the excess death observed in the pembrolizumab plus SOC arm (predictive) of the KEYNOTE-183 study. In KEYNOTE-183, with a data cutoff date of June 02, 2017, we identified plasmacytoma as a prognostic factor, and ECOG performance status as a predictive factor of death. In addition, a qualitative interaction was observed between ECOG performance status and the treatment arm. The subsequent subgroup analysis based on ECOG performance status confirmed that more deaths were associated with pembrolizumab plus SOC versus SOC alone in patients with ECOG performance status 1.
•This systematic approach identifies prognostic and predictive risk factors or subgroups contributing to the imbalance in survival observed in KEYNOTE-183.•Use of machine learning tools such as the random forest successfully identified ECOG performance status as a predictive survival factor</description><identifier>ISSN: 1551-7144</identifier><identifier>EISSN: 1559-2030</identifier><identifier>DOI: 10.1016/j.cct.2020.106179</identifier><identifier>PMID: 33086159</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Artificial intelligence ; Multiple myeloma ; Multivariable COX regression ; Predictive factor ; Prognostic factor ; Qualitative interaction ; Random forest ; Survival</subject><ispartof>Contemporary clinical trials, 2020-12, Vol.99, p.106179-106179, Article 106179</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-64db94ea39112f8ae08e34ef4b4f7dbcedde6b50239df9f5b4d1c181683ee8d53</citedby><cites>FETCH-LOGICAL-c353t-64db94ea39112f8ae08e34ef4b4f7dbcedde6b50239df9f5b4d1c181683ee8d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cct.2020.106179$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33086159$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liao, Jason J.Z.</creatorcontrib><creatorcontrib>Farooqui, Mohammed Z.H.</creatorcontrib><creatorcontrib>Marinello, Patricia</creatorcontrib><creatorcontrib>Hartzel, Jonathan</creatorcontrib><creatorcontrib>Anderson, Keaven</creatorcontrib><creatorcontrib>Ma, Junshui</creatorcontrib><creatorcontrib>Gause, Christine K.</creatorcontrib><title>Using artificial intelligence tools in answering important clinical questions: The KEYNOTE-183 multiple myeloma experience</title><title>Contemporary clinical trials</title><addtitle>Contemp Clin Trials</addtitle><description>The phase III, randomized, active-controlled, multicenter, open-label KEYNOTE-183 study (NCT02576977) evaluating pomalidomide and low dose dexamethasone (standard-of-care [SOC]) with or without pembrolizumab in patients with refractory or relapsed and refractory multiple myeloma (rrMM) was placed on full clinical hold by the US FDA on July 03, 2017 due to an imbalance in the number of deaths between arms. Clinically-led subgroup analyses are typically used to shed light on clinical findings. However, this approach is not always successful. We propose a systematic approach using the artificial intelligence tools to identifying risk factors and subgroups contributing to the overall death (prognostic) or to the excess death observed in the pembrolizumab plus SOC arm (predictive) of the KEYNOTE-183 study. In KEYNOTE-183, with a data cutoff date of June 02, 2017, we identified plasmacytoma as a prognostic factor, and ECOG performance status as a predictive factor of death. In addition, a qualitative interaction was observed between ECOG performance status and the treatment arm. The subsequent subgroup analysis based on ECOG performance status confirmed that more deaths were associated with pembrolizumab plus SOC versus SOC alone in patients with ECOG performance status 1.
•This systematic approach identifies prognostic and predictive risk factors or subgroups contributing to the imbalance in survival observed in KEYNOTE-183.•Use of machine learning tools such as the random forest successfully identified ECOG performance status as a predictive survival factor</description><subject>Artificial intelligence</subject><subject>Multiple myeloma</subject><subject>Multivariable COX regression</subject><subject>Predictive factor</subject><subject>Prognostic factor</subject><subject>Qualitative interaction</subject><subject>Random forest</subject><subject>Survival</subject><issn>1551-7144</issn><issn>1559-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O3DAUha2qqFDaB-gGedlNBjv-mQRWCE1bBCqbYdGV5dg31CMnTm0PBZ6-zgxlyco_OufTvR9CXyhZUELl6WZhTF7UpJ7fki7bd-iICtFWNWHk_e5OqyXl_BB9TGlDCJNCig_okDHSSCraI_R8l9x4j3XMrnfGaY_dmMF7dw-jAZxD8Kl8YT2mvxDnqBumELMeMzbejc6Uyp8tpOzCmM7w-jfg69Wvn7frVUUbhoetz27ygIcn8GHQGB6nwpnhn9BBr32Czy_nMbr7tlpf_qhubr9fXV7cVIYJlivJbddy0KyltO4bDaQBxqHnHe-XtjNgLchOkJq1tm970XFLDW2obBhAYwU7Rl_33CmG3aRqcMmUHfUIYZtUzQWTjRTLukTpPmpiSClCr6boBh2fFCVqVq42qihXs3K1V146Jy_4bTeAfW38d1wC5_sAlCUfHESVzE6AdREKzAb3Bv4fGfKTpQ</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Liao, Jason J.Z.</creator><creator>Farooqui, Mohammed Z.H.</creator><creator>Marinello, Patricia</creator><creator>Hartzel, Jonathan</creator><creator>Anderson, Keaven</creator><creator>Ma, Junshui</creator><creator>Gause, Christine K.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202012</creationdate><title>Using artificial intelligence tools in answering important clinical questions: The KEYNOTE-183 multiple myeloma experience</title><author>Liao, Jason J.Z. ; Farooqui, Mohammed Z.H. ; Marinello, Patricia ; Hartzel, Jonathan ; Anderson, Keaven ; Ma, Junshui ; Gause, Christine K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-64db94ea39112f8ae08e34ef4b4f7dbcedde6b50239df9f5b4d1c181683ee8d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Multiple myeloma</topic><topic>Multivariable COX regression</topic><topic>Predictive factor</topic><topic>Prognostic factor</topic><topic>Qualitative interaction</topic><topic>Random forest</topic><topic>Survival</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Jason J.Z.</creatorcontrib><creatorcontrib>Farooqui, Mohammed Z.H.</creatorcontrib><creatorcontrib>Marinello, Patricia</creatorcontrib><creatorcontrib>Hartzel, Jonathan</creatorcontrib><creatorcontrib>Anderson, Keaven</creatorcontrib><creatorcontrib>Ma, Junshui</creatorcontrib><creatorcontrib>Gause, Christine K.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Contemporary clinical trials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Jason J.Z.</au><au>Farooqui, Mohammed Z.H.</au><au>Marinello, Patricia</au><au>Hartzel, Jonathan</au><au>Anderson, Keaven</au><au>Ma, Junshui</au><au>Gause, Christine K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using artificial intelligence tools in answering important clinical questions: The KEYNOTE-183 multiple myeloma experience</atitle><jtitle>Contemporary clinical trials</jtitle><addtitle>Contemp Clin Trials</addtitle><date>2020-12</date><risdate>2020</risdate><volume>99</volume><spage>106179</spage><epage>106179</epage><pages>106179-106179</pages><artnum>106179</artnum><issn>1551-7144</issn><eissn>1559-2030</eissn><abstract>The phase III, randomized, active-controlled, multicenter, open-label KEYNOTE-183 study (NCT02576977) evaluating pomalidomide and low dose dexamethasone (standard-of-care [SOC]) with or without pembrolizumab in patients with refractory or relapsed and refractory multiple myeloma (rrMM) was placed on full clinical hold by the US FDA on July 03, 2017 due to an imbalance in the number of deaths between arms. Clinically-led subgroup analyses are typically used to shed light on clinical findings. However, this approach is not always successful. We propose a systematic approach using the artificial intelligence tools to identifying risk factors and subgroups contributing to the overall death (prognostic) or to the excess death observed in the pembrolizumab plus SOC arm (predictive) of the KEYNOTE-183 study. In KEYNOTE-183, with a data cutoff date of June 02, 2017, we identified plasmacytoma as a prognostic factor, and ECOG performance status as a predictive factor of death. In addition, a qualitative interaction was observed between ECOG performance status and the treatment arm. The subsequent subgroup analysis based on ECOG performance status confirmed that more deaths were associated with pembrolizumab plus SOC versus SOC alone in patients with ECOG performance status 1.
•This systematic approach identifies prognostic and predictive risk factors or subgroups contributing to the imbalance in survival observed in KEYNOTE-183.•Use of machine learning tools such as the random forest successfully identified ECOG performance status as a predictive survival factor</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33086159</pmid><doi>10.1016/j.cct.2020.106179</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-7144 |
ispartof | Contemporary clinical trials, 2020-12, Vol.99, p.106179-106179, Article 106179 |
issn | 1551-7144 1559-2030 |
language | eng |
recordid | cdi_proquest_miscellaneous_2453686572 |
source | Access via ScienceDirect (Elsevier) |
subjects | Artificial intelligence Multiple myeloma Multivariable COX regression Predictive factor Prognostic factor Qualitative interaction Random forest Survival |
title | Using artificial intelligence tools in answering important clinical questions: The KEYNOTE-183 multiple myeloma experience |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A48%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20artificial%20intelligence%20tools%20in%20answering%20important%20clinical%20questions:%20The%20KEYNOTE-183%20multiple%20myeloma%20experience&rft.jtitle=Contemporary%20clinical%20trials&rft.au=Liao,%20Jason%20J.Z.&rft.date=2020-12&rft.volume=99&rft.spage=106179&rft.epage=106179&rft.pages=106179-106179&rft.artnum=106179&rft.issn=1551-7144&rft.eissn=1559-2030&rft_id=info:doi/10.1016/j.cct.2020.106179&rft_dat=%3Cproquest_cross%3E2453686572%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453686572&rft_id=info:pmid/33086159&rft_els_id=S1551714420302573&rfr_iscdi=true |