Using artificial intelligence tools in answering important clinical questions: The KEYNOTE-183 multiple myeloma experience

The phase III, randomized, active-controlled, multicenter, open-label KEYNOTE-183 study (NCT02576977) evaluating pomalidomide and low dose dexamethasone (standard-of-care [SOC]) with or without pembrolizumab in patients with refractory or relapsed and refractory multiple myeloma (rrMM) was placed on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contemporary clinical trials 2020-12, Vol.99, p.106179-106179, Article 106179
Hauptverfasser: Liao, Jason J.Z., Farooqui, Mohammed Z.H., Marinello, Patricia, Hartzel, Jonathan, Anderson, Keaven, Ma, Junshui, Gause, Christine K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phase III, randomized, active-controlled, multicenter, open-label KEYNOTE-183 study (NCT02576977) evaluating pomalidomide and low dose dexamethasone (standard-of-care [SOC]) with or without pembrolizumab in patients with refractory or relapsed and refractory multiple myeloma (rrMM) was placed on full clinical hold by the US FDA on July 03, 2017 due to an imbalance in the number of deaths between arms. Clinically-led subgroup analyses are typically used to shed light on clinical findings. However, this approach is not always successful. We propose a systematic approach using the artificial intelligence tools to identifying risk factors and subgroups contributing to the overall death (prognostic) or to the excess death observed in the pembrolizumab plus SOC arm (predictive) of the KEYNOTE-183 study. In KEYNOTE-183, with a data cutoff date of June 02, 2017, we identified plasmacytoma as a prognostic factor, and ECOG performance status as a predictive factor of death. In addition, a qualitative interaction was observed between ECOG performance status and the treatment arm. The subsequent subgroup analysis based on ECOG performance status confirmed that more deaths were associated with pembrolizumab plus SOC versus SOC alone in patients with ECOG performance status 1. •This systematic approach identifies prognostic and predictive risk factors or subgroups contributing to the imbalance in survival observed in KEYNOTE-183.•Use of machine learning tools such as the random forest successfully identified ECOG performance status as a predictive survival factor
ISSN:1551-7144
1559-2030
DOI:10.1016/j.cct.2020.106179