Evolving Scheduling Heuristics via Genetic Programming With Feature Selection in Dynamic Flexible Job-Shop Scheduling

Dynamic flexible job-shop scheduling (DFJSS) is a challenging combinational optimization problem that takes the dynamic environment into account. Genetic programming hyperheuristics (GPHH) have been widely used to evolve scheduling heuristics for job-shop scheduling. A proper selection of the termin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2021-04, Vol.51 (4), p.1797-1811
Hauptverfasser: Zhang, Fangfang, Mei, Yi, Nguyen, Su, Zhang, Mengjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic flexible job-shop scheduling (DFJSS) is a challenging combinational optimization problem that takes the dynamic environment into account. Genetic programming hyperheuristics (GPHH) have been widely used to evolve scheduling heuristics for job-shop scheduling. A proper selection of the terminal set is a critical factor for the success of GPHH. However, there is a wide range of features that can capture different characteristics of the job-shop state. Moreover, the importance of a feature is unclear from one scenario to another. The irrelevant and redundant features may lead to performance limitations. Feature selection is an important task to select relevant and complementary features. However, little work has considered feature selection in GPHH for DFJSS. In this article, a novel two-stage GPHH framework with feature selection is designed to evolve scheduling heuristics only with the selected features for DFJSS automatically. Meanwhile, individual adaptation strategies are proposed to utilize the information of both the selected features and the investigated individuals during the feature selection process. The results show that the proposed algorithm can successfully achieve more interpretable scheduling heuristics with fewer unique features and smaller sizes. In addition, the proposed algorithm can reach comparable scheduling heuristic quality with much shorter training time.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2020.3024849