A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients

The COVID-19 pandemic has challenged front-line clinical decision-making, leading to numerous published prognostic tools. However, few models have been prospectively validated and none report implementation in practice. Here, we use 3345 retrospective and 474 prospective hospitalizations to develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NPJ digital medicine 2020-10, Vol.3 (1), p.130-130, Article 130
Hauptverfasser: Razavian, Narges, Major, Vincent J., Sudarshan, Mukund, Burk-Rafel, Jesse, Stella, Peter, Randhawa, Hardev, Bilaloglu, Seda, Chen, Ji, Nguy, Vuthy, Wang, Walter, Zhang, Hao, Reinstein, Ilan, Kudlowitz, David, Zenger, Cameron, Cao, Meng, Zhang, Ruina, Dogra, Siddhant, Harish, Keerthi B., Bosworth, Brian, Francois, Fritz, Horwitz, Leora I., Ranganath, Rajesh, Austrian, Jonathan, Aphinyanaphongs, Yindalon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The COVID-19 pandemic has challenged front-line clinical decision-making, leading to numerous published prognostic tools. However, few models have been prospectively validated and none report implementation in practice. Here, we use 3345 retrospective and 474 prospective hospitalizations to develop and validate a parsimonious model to identify patients with favorable outcomes within 96 h of a prediction, based on real-time lab values, vital signs, and oxygen support variables. In retrospective and prospective validation, the model achieves high average precision (88.6% 95% CI: [88.4–88.7] and 90.8% [90.8–90.8]) and discrimination (95.1% [95.1–95.2] and 86.8% [86.8–86.9]) respectively. We implemented and integrated the model into the EHR, achieving a positive predictive value of 93.3% with 41% sensitivity. Preliminary results suggest clinicians are adopting these scores into their clinical workflows.
ISSN:2398-6352
2398-6352
DOI:10.1038/s41746-020-00343-x