A multi-start global minimization algorithm with dynamic search trajectories
A new multi-start algorithm for global unconstrained minimization is presented in which the search trajectories are derived from the equation of motion of a particle in a conservative force field, where the function to be minimized represents the potential energy. The trajectories are modified to in...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 1987-07, Vol.54 (1), p.121-143 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new multi-start algorithm for global unconstrained minimization is presented in which the search trajectories are derived from the equation of motion of a particle in a conservative force field, where the function to be minimized represents the potential energy. The trajectories are modified to increase the probability of convergence to a comparatively low local minimum, thus increasing the region of convergence of the global minimum. A Bayesian argument is adopted by which, under mild assumptions, the confidence level that the global minimum has been attained may be computed. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/BF00940408 |