A multi-start global minimization algorithm with dynamic search trajectories

A new multi-start algorithm for global unconstrained minimization is presented in which the search trajectories are derived from the equation of motion of a particle in a conservative force field, where the function to be minimized represents the potential energy. The trajectories are modified to in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 1987-07, Vol.54 (1), p.121-143
Hauptverfasser: SNYMAN, J. A, FATTI, L. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new multi-start algorithm for global unconstrained minimization is presented in which the search trajectories are derived from the equation of motion of a particle in a conservative force field, where the function to be minimized represents the potential energy. The trajectories are modified to increase the probability of convergence to a comparatively low local minimum, thus increasing the region of convergence of the global minimum. A Bayesian argument is adopted by which, under mild assumptions, the confidence level that the global minimum has been attained may be computed.
ISSN:0022-3239
1573-2878
DOI:10.1007/BF00940408