Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing
Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transisto...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-11, Vol.32 (47), p.e2003018-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 47 |
container_start_page | e2003018 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Li, Yue Lu, Jikai Shang, Dashan Liu, Qi Wu, Shuyu Wu, Zuheng Zhang, Xumeng Yang, Jianguo Wang, Zhongrui Lv, Hangbing Liu, Ming |
description | Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transistors (EGTs) provide prominent analog switching performance, the most critical feature of synaptic element, and have been recently demonstrated as a promising synaptic device. However, high performance, large‐scale EGT arrays, and EGT application for spatiotemporal information processing in an SNN are yet to be demonstrated. Here, an oxide‐based EGT employing amorphous Nb2O5 and LixSiO2 is introduced as the channel and electrolyte gate materials, respectively, and integrated into a 32 × 32 EGT array. The engineered EGTs show a quasi‐linear update, good endurance (106) and retention, a high switching speed of 100 ns, ultralow readout conductance ( |
doi_str_mv | 10.1002/adma.202003018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2452508117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452508117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4168-63acf7ca53dd793c6233bbb030eb4a9f6d736f77e7168ddcee34e4a2fb9cff4b3</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsFa3rgNu3KTOLZPMstZaCxUFKy6HyVwkJcnUmRTtzkfwGX0SJ1QU3Lg68PH9h3N-AE4RHCEI8YXUjRxhiCEkEBV7YIAyjFIKebYPBpCTLOWMFofgKIQVhJAzyAbg6e6t0ubz_eNSBqOTaW1U51297Xo2k11kSy_bUIXO-ZBY55OHtewq15lm7bysk3kbYdOjNrn3TpkQqvb5GBxYWQdz8j2H4PF6upzcpIu72XwyXqSKIlakjEhlcyUzonXOiWKYkLIs4wempJJbpnPCbJ6bPNpaK2MINVRiW3JlLS3JEJzv9q69e9mY0ImmCsrUtWyN2wSBaYYzWCCUR_Xsj7pyG9_G66LFSEYKRHtrtLOUdyF4Y8XaV430W4Gg6HsWfc_ip-cY4LvAa1Wb7T-2GF_djn-zXy32hQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463538147</pqid></control><display><type>article</type><title>Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Yue ; Lu, Jikai ; Shang, Dashan ; Liu, Qi ; Wu, Shuyu ; Wu, Zuheng ; Zhang, Xumeng ; Yang, Jianguo ; Wang, Zhongrui ; Lv, Hangbing ; Liu, Ming</creator><creatorcontrib>Li, Yue ; Lu, Jikai ; Shang, Dashan ; Liu, Qi ; Wu, Shuyu ; Wu, Zuheng ; Zhang, Xumeng ; Yang, Jianguo ; Wang, Zhongrui ; Lv, Hangbing ; Liu, Ming</creatorcontrib><description>Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transistors (EGTs) provide prominent analog switching performance, the most critical feature of synaptic element, and have been recently demonstrated as a promising synaptic device. However, high performance, large‐scale EGT arrays, and EGT application for spatiotemporal information processing in an SNN are yet to be demonstrated. Here, an oxide‐based EGT employing amorphous Nb2O5 and LixSiO2 is introduced as the channel and electrolyte gate materials, respectively, and integrated into a 32 × 32 EGT array. The engineered EGTs show a quasi‐linear update, good endurance (106) and retention, a high switching speed of 100 ns, ultralow readout conductance (<100 nS), and ultralow areal switching energy density (20 fJ µm−2). The prominent analog switching performance is leveraged for hardware implementation of an SNN with the capability of spatiotemporal information processing, where spike sequences with different timings are able to be efficiently learned and recognized by the EGT array. Finally, this EGT‐based spatiotemporal information processing is deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application.
An oxide‐based electrolyte‐gated transistor (EGT) with prominent analog switching performance is introduced and integrated into a 32 × 32 array. The EGT array is leveraged for hardware implementation of spiking neural networks to process spatiotemporal information and is further deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202003018</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>analog switching ; Arrays ; Data processing ; Edge computing ; Electrolytes ; electrolyte‐gated transistors ion intercalation ; Flux density ; Information processing ; Materials science ; Neural networks ; Niobium oxides ; Resistance ; Semiconductor devices ; spatiotemporal information processing ; Switching ; Transistors</subject><ispartof>Advanced materials (Weinheim), 2020-11, Vol.32 (47), p.e2003018-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4168-63acf7ca53dd793c6233bbb030eb4a9f6d736f77e7168ddcee34e4a2fb9cff4b3</citedby><cites>FETCH-LOGICAL-c4168-63acf7ca53dd793c6233bbb030eb4a9f6d736f77e7168ddcee34e4a2fb9cff4b3</cites><orcidid>0000-0003-3573-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202003018$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202003018$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Lu, Jikai</creatorcontrib><creatorcontrib>Shang, Dashan</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Wu, Shuyu</creatorcontrib><creatorcontrib>Wu, Zuheng</creatorcontrib><creatorcontrib>Zhang, Xumeng</creatorcontrib><creatorcontrib>Yang, Jianguo</creatorcontrib><creatorcontrib>Wang, Zhongrui</creatorcontrib><creatorcontrib>Lv, Hangbing</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing</title><title>Advanced materials (Weinheim)</title><description>Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transistors (EGTs) provide prominent analog switching performance, the most critical feature of synaptic element, and have been recently demonstrated as a promising synaptic device. However, high performance, large‐scale EGT arrays, and EGT application for spatiotemporal information processing in an SNN are yet to be demonstrated. Here, an oxide‐based EGT employing amorphous Nb2O5 and LixSiO2 is introduced as the channel and electrolyte gate materials, respectively, and integrated into a 32 × 32 EGT array. The engineered EGTs show a quasi‐linear update, good endurance (106) and retention, a high switching speed of 100 ns, ultralow readout conductance (<100 nS), and ultralow areal switching energy density (20 fJ µm−2). The prominent analog switching performance is leveraged for hardware implementation of an SNN with the capability of spatiotemporal information processing, where spike sequences with different timings are able to be efficiently learned and recognized by the EGT array. Finally, this EGT‐based spatiotemporal information processing is deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application.
An oxide‐based electrolyte‐gated transistor (EGT) with prominent analog switching performance is introduced and integrated into a 32 × 32 array. The EGT array is leveraged for hardware implementation of spiking neural networks to process spatiotemporal information and is further deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application.</description><subject>analog switching</subject><subject>Arrays</subject><subject>Data processing</subject><subject>Edge computing</subject><subject>Electrolytes</subject><subject>electrolyte‐gated transistors ion intercalation</subject><subject>Flux density</subject><subject>Information processing</subject><subject>Materials science</subject><subject>Neural networks</subject><subject>Niobium oxides</subject><subject>Resistance</subject><subject>Semiconductor devices</subject><subject>spatiotemporal information processing</subject><subject>Switching</subject><subject>Transistors</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRsFa3rgNu3KTOLZPMstZaCxUFKy6HyVwkJcnUmRTtzkfwGX0SJ1QU3Lg68PH9h3N-AE4RHCEI8YXUjRxhiCEkEBV7YIAyjFIKebYPBpCTLOWMFofgKIQVhJAzyAbg6e6t0ubz_eNSBqOTaW1U51297Xo2k11kSy_bUIXO-ZBY55OHtewq15lm7bysk3kbYdOjNrn3TpkQqvb5GBxYWQdz8j2H4PF6upzcpIu72XwyXqSKIlakjEhlcyUzonXOiWKYkLIs4wempJJbpnPCbJ6bPNpaK2MINVRiW3JlLS3JEJzv9q69e9mY0ImmCsrUtWyN2wSBaYYzWCCUR_Xsj7pyG9_G66LFSEYKRHtrtLOUdyF4Y8XaV430W4Gg6HsWfc_ip-cY4LvAa1Wb7T-2GF_djn-zXy32hQI</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Li, Yue</creator><creator>Lu, Jikai</creator><creator>Shang, Dashan</creator><creator>Liu, Qi</creator><creator>Wu, Shuyu</creator><creator>Wu, Zuheng</creator><creator>Zhang, Xumeng</creator><creator>Yang, Jianguo</creator><creator>Wang, Zhongrui</creator><creator>Lv, Hangbing</creator><creator>Liu, Ming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3573-8390</orcidid></search><sort><creationdate>20201101</creationdate><title>Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing</title><author>Li, Yue ; Lu, Jikai ; Shang, Dashan ; Liu, Qi ; Wu, Shuyu ; Wu, Zuheng ; Zhang, Xumeng ; Yang, Jianguo ; Wang, Zhongrui ; Lv, Hangbing ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4168-63acf7ca53dd793c6233bbb030eb4a9f6d736f77e7168ddcee34e4a2fb9cff4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>analog switching</topic><topic>Arrays</topic><topic>Data processing</topic><topic>Edge computing</topic><topic>Electrolytes</topic><topic>electrolyte‐gated transistors ion intercalation</topic><topic>Flux density</topic><topic>Information processing</topic><topic>Materials science</topic><topic>Neural networks</topic><topic>Niobium oxides</topic><topic>Resistance</topic><topic>Semiconductor devices</topic><topic>spatiotemporal information processing</topic><topic>Switching</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Lu, Jikai</creatorcontrib><creatorcontrib>Shang, Dashan</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Wu, Shuyu</creatorcontrib><creatorcontrib>Wu, Zuheng</creatorcontrib><creatorcontrib>Zhang, Xumeng</creatorcontrib><creatorcontrib>Yang, Jianguo</creatorcontrib><creatorcontrib>Wang, Zhongrui</creatorcontrib><creatorcontrib>Lv, Hangbing</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yue</au><au>Lu, Jikai</au><au>Shang, Dashan</au><au>Liu, Qi</au><au>Wu, Shuyu</au><au>Wu, Zuheng</au><au>Zhang, Xumeng</au><au>Yang, Jianguo</au><au>Wang, Zhongrui</au><au>Lv, Hangbing</au><au>Liu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>47</issue><spage>e2003018</spage><epage>n/a</epage><pages>e2003018-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transistors (EGTs) provide prominent analog switching performance, the most critical feature of synaptic element, and have been recently demonstrated as a promising synaptic device. However, high performance, large‐scale EGT arrays, and EGT application for spatiotemporal information processing in an SNN are yet to be demonstrated. Here, an oxide‐based EGT employing amorphous Nb2O5 and LixSiO2 is introduced as the channel and electrolyte gate materials, respectively, and integrated into a 32 × 32 EGT array. The engineered EGTs show a quasi‐linear update, good endurance (106) and retention, a high switching speed of 100 ns, ultralow readout conductance (<100 nS), and ultralow areal switching energy density (20 fJ µm−2). The prominent analog switching performance is leveraged for hardware implementation of an SNN with the capability of spatiotemporal information processing, where spike sequences with different timings are able to be efficiently learned and recognized by the EGT array. Finally, this EGT‐based spatiotemporal information processing is deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application.
An oxide‐based electrolyte‐gated transistor (EGT) with prominent analog switching performance is introduced and integrated into a 32 × 32 array. The EGT array is leveraged for hardware implementation of spiking neural networks to process spatiotemporal information and is further deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202003018</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3573-8390</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-11, Vol.32 (47), p.e2003018-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2452508117 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | analog switching Arrays Data processing Edge computing Electrolytes electrolyte‐gated transistors ion intercalation Flux density Information processing Materials science Neural networks Niobium oxides Resistance Semiconductor devices spatiotemporal information processing Switching Transistors |
title | Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxide%E2%80%90Based%20Electrolyte%E2%80%90Gated%20Transistors%20for%20Spatiotemporal%20Information%20Processing&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Yue&rft.date=2020-11-01&rft.volume=32&rft.issue=47&rft.spage=e2003018&rft.epage=n/a&rft.pages=e2003018-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202003018&rft_dat=%3Cproquest_cross%3E2452508117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463538147&rft_id=info:pmid/&rfr_iscdi=true |