Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing

Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transisto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-11, Vol.32 (47), p.e2003018-n/a
Hauptverfasser: Li, Yue, Lu, Jikai, Shang, Dashan, Liu, Qi, Wu, Shuyu, Wu, Zuheng, Zhang, Xumeng, Yang, Jianguo, Wang, Zhongrui, Lv, Hangbing, Liu, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 47
container_start_page e2003018
container_title Advanced materials (Weinheim)
container_volume 32
creator Li, Yue
Lu, Jikai
Shang, Dashan
Liu, Qi
Wu, Shuyu
Wu, Zuheng
Zhang, Xumeng
Yang, Jianguo
Wang, Zhongrui
Lv, Hangbing
Liu, Ming
description Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transistors (EGTs) provide prominent analog switching performance, the most critical feature of synaptic element, and have been recently demonstrated as a promising synaptic device. However, high performance, large‐scale EGT arrays, and EGT application for spatiotemporal information processing in an SNN are yet to be demonstrated. Here, an oxide‐based EGT employing amorphous Nb2O5 and LixSiO2 is introduced as the channel and electrolyte gate materials, respectively, and integrated into a 32 × 32 EGT array. The engineered EGTs show a quasi‐linear update, good endurance (106) and retention, a high switching speed of 100 ns, ultralow readout conductance (
doi_str_mv 10.1002/adma.202003018
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2452508117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452508117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4168-63acf7ca53dd793c6233bbb030eb4a9f6d736f77e7168ddcee34e4a2fb9cff4b3</originalsourceid><addsrcrecordid>eNqFkMtKw0AUhgdRsFa3rgNu3KTOLZPMstZaCxUFKy6HyVwkJcnUmRTtzkfwGX0SJ1QU3Lg68PH9h3N-AE4RHCEI8YXUjRxhiCEkEBV7YIAyjFIKebYPBpCTLOWMFofgKIQVhJAzyAbg6e6t0ubz_eNSBqOTaW1U51297Xo2k11kSy_bUIXO-ZBY55OHtewq15lm7bysk3kbYdOjNrn3TpkQqvb5GBxYWQdz8j2H4PF6upzcpIu72XwyXqSKIlakjEhlcyUzonXOiWKYkLIs4wempJJbpnPCbJ6bPNpaK2MINVRiW3JlLS3JEJzv9q69e9mY0ImmCsrUtWyN2wSBaYYzWCCUR_Xsj7pyG9_G66LFSEYKRHtrtLOUdyF4Y8XaV430W4Gg6HsWfc_ip-cY4LvAa1Wb7T-2GF_djn-zXy32hQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2463538147</pqid></control><display><type>article</type><title>Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Yue ; Lu, Jikai ; Shang, Dashan ; Liu, Qi ; Wu, Shuyu ; Wu, Zuheng ; Zhang, Xumeng ; Yang, Jianguo ; Wang, Zhongrui ; Lv, Hangbing ; Liu, Ming</creator><creatorcontrib>Li, Yue ; Lu, Jikai ; Shang, Dashan ; Liu, Qi ; Wu, Shuyu ; Wu, Zuheng ; Zhang, Xumeng ; Yang, Jianguo ; Wang, Zhongrui ; Lv, Hangbing ; Liu, Ming</creatorcontrib><description>Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transistors (EGTs) provide prominent analog switching performance, the most critical feature of synaptic element, and have been recently demonstrated as a promising synaptic device. However, high performance, large‐scale EGT arrays, and EGT application for spatiotemporal information processing in an SNN are yet to be demonstrated. Here, an oxide‐based EGT employing amorphous Nb2O5 and LixSiO2 is introduced as the channel and electrolyte gate materials, respectively, and integrated into a 32 × 32 EGT array. The engineered EGTs show a quasi‐linear update, good endurance (106) and retention, a high switching speed of 100 ns, ultralow readout conductance (&lt;100 nS), and ultralow areal switching energy density (20 fJ µm−2). The prominent analog switching performance is leveraged for hardware implementation of an SNN with the capability of spatiotemporal information processing, where spike sequences with different timings are able to be efficiently learned and recognized by the EGT array. Finally, this EGT‐based spatiotemporal information processing is deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application. An oxide‐based electrolyte‐gated transistor (EGT) with prominent analog switching performance is introduced and integrated into a 32 × 32 array. The EGT array is leveraged for hardware implementation of spiking neural networks to process spatiotemporal information and is further deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202003018</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>analog switching ; Arrays ; Data processing ; Edge computing ; Electrolytes ; electrolyte‐gated transistors ion intercalation ; Flux density ; Information processing ; Materials science ; Neural networks ; Niobium oxides ; Resistance ; Semiconductor devices ; spatiotemporal information processing ; Switching ; Transistors</subject><ispartof>Advanced materials (Weinheim), 2020-11, Vol.32 (47), p.e2003018-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4168-63acf7ca53dd793c6233bbb030eb4a9f6d736f77e7168ddcee34e4a2fb9cff4b3</citedby><cites>FETCH-LOGICAL-c4168-63acf7ca53dd793c6233bbb030eb4a9f6d736f77e7168ddcee34e4a2fb9cff4b3</cites><orcidid>0000-0003-3573-8390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202003018$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202003018$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Lu, Jikai</creatorcontrib><creatorcontrib>Shang, Dashan</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Wu, Shuyu</creatorcontrib><creatorcontrib>Wu, Zuheng</creatorcontrib><creatorcontrib>Zhang, Xumeng</creatorcontrib><creatorcontrib>Yang, Jianguo</creatorcontrib><creatorcontrib>Wang, Zhongrui</creatorcontrib><creatorcontrib>Lv, Hangbing</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><title>Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing</title><title>Advanced materials (Weinheim)</title><description>Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transistors (EGTs) provide prominent analog switching performance, the most critical feature of synaptic element, and have been recently demonstrated as a promising synaptic device. However, high performance, large‐scale EGT arrays, and EGT application for spatiotemporal information processing in an SNN are yet to be demonstrated. Here, an oxide‐based EGT employing amorphous Nb2O5 and LixSiO2 is introduced as the channel and electrolyte gate materials, respectively, and integrated into a 32 × 32 EGT array. The engineered EGTs show a quasi‐linear update, good endurance (106) and retention, a high switching speed of 100 ns, ultralow readout conductance (&lt;100 nS), and ultralow areal switching energy density (20 fJ µm−2). The prominent analog switching performance is leveraged for hardware implementation of an SNN with the capability of spatiotemporal information processing, where spike sequences with different timings are able to be efficiently learned and recognized by the EGT array. Finally, this EGT‐based spatiotemporal information processing is deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application. An oxide‐based electrolyte‐gated transistor (EGT) with prominent analog switching performance is introduced and integrated into a 32 × 32 array. The EGT array is leveraged for hardware implementation of spiking neural networks to process spatiotemporal information and is further deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application.</description><subject>analog switching</subject><subject>Arrays</subject><subject>Data processing</subject><subject>Edge computing</subject><subject>Electrolytes</subject><subject>electrolyte‐gated transistors ion intercalation</subject><subject>Flux density</subject><subject>Information processing</subject><subject>Materials science</subject><subject>Neural networks</subject><subject>Niobium oxides</subject><subject>Resistance</subject><subject>Semiconductor devices</subject><subject>spatiotemporal information processing</subject><subject>Switching</subject><subject>Transistors</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKw0AUhgdRsFa3rgNu3KTOLZPMstZaCxUFKy6HyVwkJcnUmRTtzkfwGX0SJ1QU3Lg68PH9h3N-AE4RHCEI8YXUjRxhiCEkEBV7YIAyjFIKebYPBpCTLOWMFofgKIQVhJAzyAbg6e6t0ubz_eNSBqOTaW1U51297Xo2k11kSy_bUIXO-ZBY55OHtewq15lm7bysk3kbYdOjNrn3TpkQqvb5GBxYWQdz8j2H4PF6upzcpIu72XwyXqSKIlakjEhlcyUzonXOiWKYkLIs4wempJJbpnPCbJ6bPNpaK2MINVRiW3JlLS3JEJzv9q69e9mY0ImmCsrUtWyN2wSBaYYzWCCUR_Xsj7pyG9_G66LFSEYKRHtrtLOUdyF4Y8XaV430W4Gg6HsWfc_ip-cY4LvAa1Wb7T-2GF_djn-zXy32hQI</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Li, Yue</creator><creator>Lu, Jikai</creator><creator>Shang, Dashan</creator><creator>Liu, Qi</creator><creator>Wu, Shuyu</creator><creator>Wu, Zuheng</creator><creator>Zhang, Xumeng</creator><creator>Yang, Jianguo</creator><creator>Wang, Zhongrui</creator><creator>Lv, Hangbing</creator><creator>Liu, Ming</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3573-8390</orcidid></search><sort><creationdate>20201101</creationdate><title>Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing</title><author>Li, Yue ; Lu, Jikai ; Shang, Dashan ; Liu, Qi ; Wu, Shuyu ; Wu, Zuheng ; Zhang, Xumeng ; Yang, Jianguo ; Wang, Zhongrui ; Lv, Hangbing ; Liu, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4168-63acf7ca53dd793c6233bbb030eb4a9f6d736f77e7168ddcee34e4a2fb9cff4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>analog switching</topic><topic>Arrays</topic><topic>Data processing</topic><topic>Edge computing</topic><topic>Electrolytes</topic><topic>electrolyte‐gated transistors ion intercalation</topic><topic>Flux density</topic><topic>Information processing</topic><topic>Materials science</topic><topic>Neural networks</topic><topic>Niobium oxides</topic><topic>Resistance</topic><topic>Semiconductor devices</topic><topic>spatiotemporal information processing</topic><topic>Switching</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Lu, Jikai</creatorcontrib><creatorcontrib>Shang, Dashan</creatorcontrib><creatorcontrib>Liu, Qi</creatorcontrib><creatorcontrib>Wu, Shuyu</creatorcontrib><creatorcontrib>Wu, Zuheng</creatorcontrib><creatorcontrib>Zhang, Xumeng</creatorcontrib><creatorcontrib>Yang, Jianguo</creatorcontrib><creatorcontrib>Wang, Zhongrui</creatorcontrib><creatorcontrib>Lv, Hangbing</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yue</au><au>Lu, Jikai</au><au>Shang, Dashan</au><au>Liu, Qi</au><au>Wu, Shuyu</au><au>Wu, Zuheng</au><au>Zhang, Xumeng</au><au>Yang, Jianguo</au><au>Wang, Zhongrui</au><au>Lv, Hangbing</au><au>Liu, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>47</issue><spage>e2003018</spage><epage>n/a</epage><pages>e2003018-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transistors (EGTs) provide prominent analog switching performance, the most critical feature of synaptic element, and have been recently demonstrated as a promising synaptic device. However, high performance, large‐scale EGT arrays, and EGT application for spatiotemporal information processing in an SNN are yet to be demonstrated. Here, an oxide‐based EGT employing amorphous Nb2O5 and LixSiO2 is introduced as the channel and electrolyte gate materials, respectively, and integrated into a 32 × 32 EGT array. The engineered EGTs show a quasi‐linear update, good endurance (106) and retention, a high switching speed of 100 ns, ultralow readout conductance (&lt;100 nS), and ultralow areal switching energy density (20 fJ µm−2). The prominent analog switching performance is leveraged for hardware implementation of an SNN with the capability of spatiotemporal information processing, where spike sequences with different timings are able to be efficiently learned and recognized by the EGT array. Finally, this EGT‐based spatiotemporal information processing is deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application. An oxide‐based electrolyte‐gated transistor (EGT) with prominent analog switching performance is introduced and integrated into a 32 × 32 array. The EGT array is leveraged for hardware implementation of spiking neural networks to process spatiotemporal information and is further deployed to detect moving orientation in a tactile sensing system. These results provide an insight into oxide‐based EGT devices for energy‐efficient neuromorphic computing to support edge application.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202003018</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3573-8390</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-11, Vol.32 (47), p.e2003018-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2452508117
source Wiley Online Library Journals Frontfile Complete
subjects analog switching
Arrays
Data processing
Edge computing
Electrolytes
electrolyte‐gated transistors ion intercalation
Flux density
Information processing
Materials science
Neural networks
Niobium oxides
Resistance
Semiconductor devices
spatiotemporal information processing
Switching
Transistors
title Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxide%E2%80%90Based%20Electrolyte%E2%80%90Gated%20Transistors%20for%20Spatiotemporal%20Information%20Processing&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Yue&rft.date=2020-11-01&rft.volume=32&rft.issue=47&rft.spage=e2003018&rft.epage=n/a&rft.pages=e2003018-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202003018&rft_dat=%3Cproquest_cross%3E2452508117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2463538147&rft_id=info:pmid/&rfr_iscdi=true