Oxide‐Based Electrolyte‐Gated Transistors for Spatiotemporal Information Processing

Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transisto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-11, Vol.32 (47), p.e2003018-n/a
Hauptverfasser: Li, Yue, Lu, Jikai, Shang, Dashan, Liu, Qi, Wu, Shuyu, Wu, Zuheng, Zhang, Xumeng, Yang, Jianguo, Wang, Zhongrui, Lv, Hangbing, Liu, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spiking neural networks (SNNs) sharing large similarity with biological nervous systems are promising to process spatiotemporal information and can provide highly time‐ and energy‐efficient computational paradigms for the Internet‐of‐Things and edge computing. Nonvolatile electrolyte‐gated transistors (EGTs) provide prominent analog switching performance, the most critical feature of synaptic element, and have been recently demonstrated as a promising synaptic device. However, high performance, large‐scale EGT arrays, and EGT application for spatiotemporal information processing in an SNN are yet to be demonstrated. Here, an oxide‐based EGT employing amorphous Nb2O5 and LixSiO2 is introduced as the channel and electrolyte gate materials, respectively, and integrated into a 32 × 32 EGT array. The engineered EGTs show a quasi‐linear update, good endurance (106) and retention, a high switching speed of 100 ns, ultralow readout conductance (
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.202003018