Precise Synthesis of Fe‑N2 Sites with High Activity and Stability for Long-Life Lithium–Sulfur Batteries
Precisely tuning the coordination environment of the metal center and further maximizing the activity of transition metal–nitrogen carbon (M-NC) catalysts for high-performance lithium–sulfur batteries are greatly desired. Herein, we construct an Fe-NC material with uniform and stable Fe-N2 coordinat...
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-11, Vol.14 (11), p.16105-16113 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Precisely tuning the coordination environment of the metal center and further maximizing the activity of transition metal–nitrogen carbon (M-NC) catalysts for high-performance lithium–sulfur batteries are greatly desired. Herein, we construct an Fe-NC material with uniform and stable Fe-N2 coordination structure. The theoretical and experimental results indicate that the unsaturated Fe-N2 center can act as a multifunctional site for anchoring lithium polysulfides (LiPSs), accelerating the redox conversion of LiPSs and reducing the reaction energy barrier of Li2S decomposition. Consequently, the batteries based on a porous carbon nitride supported Fe-N2 site (Fe-N2/CN) host exhibit excellent cycling performance with a capacity decay of 0.011% per cycle at 2 C after 2000 cycles. This work deepens the understanding of the relationship between electronic structure of M-NC sites and the catalysis effect for the conversion of LiPSs. This strategy also provides a potent guidance for the further application of M-NC materials in advanced lithium–sulfur batteries. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.0c08056 |