Combined application of femtosecond laser and air‐abrasion protocols to monolithic zirconia at different sintering stages: Effects on surface roughness and resin bond strength
This study aimed to investigate the effects of femtosecond laser (Fs) and/or air‐abrasion protocols on surface roughness (Ra) of zirconia and resin bond strength. Eighty zirconia samples were randomly divided into eight subgroups according to surface treatment protocols: Control (C), Air‐abrasion be...
Gespeichert in:
Veröffentlicht in: | Journal of biomedical materials research. Part B, Applied biomaterials Applied biomaterials, 2021-04, Vol.109 (4), p.596-605 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to investigate the effects of femtosecond laser (Fs) and/or air‐abrasion protocols on surface roughness (Ra) of zirconia and resin bond strength. Eighty zirconia samples were randomly divided into eight subgroups according to surface treatment protocols: Control (C), Air‐abrasion before sintering (ABS), Air‐abrasion after sintering (AAS), Air‐abrasion before and after sintering (ABS + AAS), Fs laser before sintering (FBS), Fs laser before sintering + air‐abrasion after sintering (FBS + AAS), Fs laser after sintering (FAS), and Fs laser after sintering + air‐abrasion after sintering (FAS + AAS). Measurements of Ra values were obtained using a surface profilometer. Surface morphological properties were evaluated with scanning electron microscopy (SEM), and crystallographic changes were examined by X‐Ray diffractometry (XRD). Self‐adhesive resin cement was bonded to zirconia samples, and shear bond strength (SBS) tests were performed. The data were statistically analyzed by one‐way ANOVA, followed by Tamhane tests. The control group displayed the lowest Ra and SBS values among all groups. The highest Ra and SBS values were found in the FBS and FBS + AAS groups. Air‐abrasion applied before sintering significantly increased the Ra of specimens. FAS, FAS + AAS, and ABS + AAS groups exhibited higher SBS values than AAS and ABS (p .05). Femtosecond laser application may be a promising method to enhance the surface roughness of zirconia and improve resin bond strength. Air‐abrasion at pre‐ and post‐sintered stages may also be a viable surface treatment option. |
---|---|
ISSN: | 1552-4973 1552-4981 |
DOI: | 10.1002/jbm.b.34741 |