Towards lignin derived thermoplastic polymers
Lignin is the second most abundant biobased material found on earth. It is produced mainly as a byproduct of pulp and paper industry and biorefineries. Despite its abundance, lignin valorization is not achieved on a large scale. Recently, there has been a growing demand for using the renewable and b...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2020-12, Vol.165 (Pt B), p.3180-3197 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lignin is the second most abundant biobased material found on earth. It is produced mainly as a byproduct of pulp and paper industry and biorefineries. Despite its abundance, lignin valorization is not achieved on a large scale. Recently, there has been a growing demand for using the renewable and biodegradable raw materials in the commodity polymers. Potential use of lignin as a component in thermoplastic polymers is a promising approach for its value-added utilization. Given the vast applications of thermoplastic materials, there is lack of comprehensive review on lignin based thermoplastic polymers in literature. This review focuses on the utilization of lignin as functional and structural component of the thermoplastic polymers which requires structural modifications of lignin pertaining to the polymeric system. First, various lignin modifications were discussed in view of controlling the homogeneity, reactivity, processability and compatibility of lignin for successful thermoplastic copolymer synthesis and blend processing. Then, various copolymerization methodologies of lignin applicable for thermoplastic monomers are reviewed. Lastly, the lignin based thermoplastic blends are discussed which covers the lignin blends with various thermoplastic polymers and the chemical modifications required to improve its compatibility in polymer matrix. Some of the promising potential applications and future perspectives to achieve the goal of lignin-based commercial thermoplastics polymers are addressed.
A comprehensive review of lignin-based thermoplastics (copolymers and blends) with focus on various lignin modification, copolymer synthesis strategies, and thermal and mechanical properties. [Display omitted] |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2020.09.173 |