Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles

[Display omitted] Antibacterial textiles, which effectively inhibit bacterial breeding and resist pathogenic diseases, have wide applications in medicine, hygiene, and related fields. However, traditional antibacterial textiles exhibit significant limitations, such as poor antibacterial durability a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2021-02, Vol.584, p.164-173
Hauptverfasser: Yu, Wen, Li, Xiang, He, Jianxin, Chen, Yuankun, Qi, Linya, Yuan, Pingping, Ou, Kangkang, Liu, Fan, Zhou, Yuman, Qin, Xiaohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Antibacterial textiles, which effectively inhibit bacterial breeding and resist pathogenic diseases, have wide applications in medicine, hygiene, and related fields. However, traditional antibacterial textiles exhibit significant limitations, such as poor antibacterial durability and contamination during preparation. In this work, nanofiber yarn loaded with a high-efficiency antibacterial agent was prepared using electrospinning technology. Polyethyleneimine (PEI) was introduced as a solubilizing material to functionalize graphene oxide (GO) to form GO-PEI composites. A facile microwave heating method was used to synthesize GO-PEI and silver nanoparticles (AgNPs). A multi-needle conjugated electrospinning device was used to blend the nanofibers with the GO-PEI-Ag composite to form a nanofiber core-spun yarn. The antibacterial agent was firmly fixed on the fiber to prevent easy removal. A uniformly oriented yarn structure and internal morphology were observed, and the antibacterial activity of the fabric was measured. The antibacterial rate of the fabric was over 99.99%for both Escherichia coli and Staphylococcus aureus. After ten washes, the antibacterial rate remained above 99.99%. Thus, nanofiber fabric from electrospinning displays high antibacterial activity and excellent durability, thereby providing a feasible methodology for future production of antibacterial textiles.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2020.09.092