Significant reductions in apoptosis-related proteins (HSPA6, HSPA8, ITGB3, YWHAH, and PRDX6) are involved in immune thrombocytopenia
To investigate differences in the expression of plasma proteins in immune thrombocytopenia (ITP) and normal control groups, bone marrow samples were collected from 20 active ITP patients and 20 healthy controls. Quantitative proteomics analysis based on mass spectrometry was used to measure the prot...
Gespeichert in:
Veröffentlicht in: | Journal of thrombosis and thrombolysis 2021-05, Vol.51 (4), p.905-914 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To investigate differences in the expression of plasma proteins in immune thrombocytopenia (ITP) and normal control groups, bone marrow samples were collected from 20 active ITP patients and 20 healthy controls. Quantitative proteomics analysis based on mass spectrometry was used to measure the protein levels and understand the protein networks. We found differentially expressed proteins in ITP patients and healthy controls. Parallel reaction monitoring (PRM), a targeted proteome quantification technique, was used to quantitatively confirm the identified target proteins and verify the proteomics data. In this study, a total of 829 proteins were identified, and the fold-change cut-off was set at 1.5 (patients vs controls); a total of 26 proteins were upregulated, and 69 proteins were downregulated. The bioinformatics analysis indicated that some differentially expressed proteins were associated with apoptosis. KEGG enrichment analysis showed that the apoptosis-related proteins were closely related to the PI3K-Akt signalling pathway. PRM demonstrated that apoptosis-related proteins were significantly decreased in ITP patients, which further confirmed the important effect of apoptosis on ITP pathogenesis. We hypothesised that apoptosis may be closely related to ITP pathogenesis through the PI3K-Akt signalling pathway. |
---|---|
ISSN: | 0929-5305 1573-742X |
DOI: | 10.1007/s11239-020-02310-5 |