Modeling the Dose Response Relationship of Waterborne Acanthamoeba

This study developed dose response models for determining the probability of eye or central nervous system infections from previously conducted studies using different strains of Acanthamoeba spp. The data were a result of animal experiments using mice and rats exposed corneally and intranasally to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Risk analysis 2021-01, Vol.41 (1), p.79-91
Hauptverfasser: Dean, Kara, Tamrakar, Sushil, Huang, Yin, Rose, Joan B., Mitchell, Jade
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 1
container_start_page 79
container_title Risk analysis
container_volume 41
creator Dean, Kara
Tamrakar, Sushil
Huang, Yin
Rose, Joan B.
Mitchell, Jade
description This study developed dose response models for determining the probability of eye or central nervous system infections from previously conducted studies using different strains of Acanthamoeba spp. The data were a result of animal experiments using mice and rats exposed corneally and intranasally to the pathogens. The corneal inoculations of Acanthamoeba isolate Ac 118 included varied amounts of Corynebacterium xerosis and were best fit by the exponential model. Virulence increased with higher levels of C. xerosis. The Acanthamoeba culbertsoni intranasal study with death as an endpoint of response was best fit by the beta‐Poisson model. The HN‐3 strain of A. castellanii was studied with an intranasal exposure and three different endpoints of response. For all three studies, the exponential model was the best fit. A model based on pooling data sets of the intranasal exposure and death endpoint resulted in an LD50 of 19,357 amebae. The dose response models developed in this study are an important step towards characterizing the risk associated with free‐living amoeba like Acanthamoeba in drinking water distribution systems. Understanding the human health risk posed by free‐living amoeba will allow for quantitative microbial risk assessments that support building design decisions to minimize opportunities for pathogen growth and survival.
doi_str_mv 10.1111/risa.13603
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2450650710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2450650710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2723-61dca741bdacb0fe28222ac777b722d0f07fd761eab70e4b1750a9017a4ed3293</originalsourceid><addsrcrecordid>eNp9kEtLw0AUhQdRbK1u_AEScCNC6p1HMs2y1lehIlTFZZgkNzaSZOJMgvTfO22qCxfezT2Lj8PhI-SUwpi6uzKFVWPKQ-B7ZEgDHvlhxMQ-GQKTzBecswE5svYDgAIE8pAMOAchJzQYkutHnWFZ1O9eu0LvRlv0lmgbXW9DqdrCxVXReDr33lSLJtGmRm-aqrpdqUpjoo7JQa5Kiye7PyKvd7cvswd_8XQ_n00XfupmcD-kWaqkoEmm0gRyZBPGmEqllIlkLIMcZJ7JkKJKJKBIqAxARUClEphxFvERueh7G6M_O7RtXBU2xbJUNerOxkwEEAYgKTj0_A_6oTtTu3WOmkgmROQmjchlT6VGW2swjxtTVMqsYwrxxmy8MRtvzTr4bFfZJRVmv-iPSgfQHvgqSlz_UxUv58_TvvQbUmWB_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2487244972</pqid></control><display><type>article</type><title>Modeling the Dose Response Relationship of Waterborne Acanthamoeba</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Dean, Kara ; Tamrakar, Sushil ; Huang, Yin ; Rose, Joan B. ; Mitchell, Jade</creator><creatorcontrib>Dean, Kara ; Tamrakar, Sushil ; Huang, Yin ; Rose, Joan B. ; Mitchell, Jade</creatorcontrib><description>This study developed dose response models for determining the probability of eye or central nervous system infections from previously conducted studies using different strains of Acanthamoeba spp. The data were a result of animal experiments using mice and rats exposed corneally and intranasally to the pathogens. The corneal inoculations of Acanthamoeba isolate Ac 118 included varied amounts of Corynebacterium xerosis and were best fit by the exponential model. Virulence increased with higher levels of C. xerosis. The Acanthamoeba culbertsoni intranasal study with death as an endpoint of response was best fit by the beta‐Poisson model. The HN‐3 strain of A. castellanii was studied with an intranasal exposure and three different endpoints of response. For all three studies, the exponential model was the best fit. A model based on pooling data sets of the intranasal exposure and death endpoint resulted in an LD50 of 19,357 amebae. The dose response models developed in this study are an important step towards characterizing the risk associated with free‐living amoeba like Acanthamoeba in drinking water distribution systems. Understanding the human health risk posed by free‐living amoeba will allow for quantitative microbial risk assessments that support building design decisions to minimize opportunities for pathogen growth and survival.</description><identifier>ISSN: 0272-4332</identifier><identifier>EISSN: 1539-6924</identifier><identifier>DOI: 10.1111/risa.13603</identifier><identifier>PMID: 33047815</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Acanthamoeba ; Acanthamoeba - pathogenicity ; Amoeba ; Animal research ; Animals ; beta‐Poisson model ; Building design ; Central nervous system ; Central Nervous System Infections - diagnosis ; Central Nervous System Infections - parasitology ; Cornea ; Corynebacterium ; Death &amp; dying ; Disease Models, Animal ; dose response ; Drinking water ; exponential model ; Exposure ; Eye Infections, Parasitic - diagnosis ; Health risks ; Inoculation ; Likelihood Functions ; Mice ; microbial risk assessment ; Microorganisms ; Models, Statistical ; Nasal sprays ; Nervous system ; Pathogens ; Rats ; Risk assessment ; Risk Assessment - methods ; Virulence ; Water - parasitology ; Water distribution ; Water distribution systems ; Water engineering</subject><ispartof>Risk analysis, 2021-01, Vol.41 (1), p.79-91</ispartof><rights>2020 Society for Risk Analysis</rights><rights>2020 Society for Risk Analysis.</rights><rights>2021 Society for Risk Analysis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2723-61dca741bdacb0fe28222ac777b722d0f07fd761eab70e4b1750a9017a4ed3293</citedby><cites>FETCH-LOGICAL-c2723-61dca741bdacb0fe28222ac777b722d0f07fd761eab70e4b1750a9017a4ed3293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Frisa.13603$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Frisa.13603$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27913,27914,45563,45564</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33047815$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dean, Kara</creatorcontrib><creatorcontrib>Tamrakar, Sushil</creatorcontrib><creatorcontrib>Huang, Yin</creatorcontrib><creatorcontrib>Rose, Joan B.</creatorcontrib><creatorcontrib>Mitchell, Jade</creatorcontrib><title>Modeling the Dose Response Relationship of Waterborne Acanthamoeba</title><title>Risk analysis</title><addtitle>Risk Anal</addtitle><description>This study developed dose response models for determining the probability of eye or central nervous system infections from previously conducted studies using different strains of Acanthamoeba spp. The data were a result of animal experiments using mice and rats exposed corneally and intranasally to the pathogens. The corneal inoculations of Acanthamoeba isolate Ac 118 included varied amounts of Corynebacterium xerosis and were best fit by the exponential model. Virulence increased with higher levels of C. xerosis. The Acanthamoeba culbertsoni intranasal study with death as an endpoint of response was best fit by the beta‐Poisson model. The HN‐3 strain of A. castellanii was studied with an intranasal exposure and three different endpoints of response. For all three studies, the exponential model was the best fit. A model based on pooling data sets of the intranasal exposure and death endpoint resulted in an LD50 of 19,357 amebae. The dose response models developed in this study are an important step towards characterizing the risk associated with free‐living amoeba like Acanthamoeba in drinking water distribution systems. Understanding the human health risk posed by free‐living amoeba will allow for quantitative microbial risk assessments that support building design decisions to minimize opportunities for pathogen growth and survival.</description><subject>Acanthamoeba</subject><subject>Acanthamoeba - pathogenicity</subject><subject>Amoeba</subject><subject>Animal research</subject><subject>Animals</subject><subject>beta‐Poisson model</subject><subject>Building design</subject><subject>Central nervous system</subject><subject>Central Nervous System Infections - diagnosis</subject><subject>Central Nervous System Infections - parasitology</subject><subject>Cornea</subject><subject>Corynebacterium</subject><subject>Death &amp; dying</subject><subject>Disease Models, Animal</subject><subject>dose response</subject><subject>Drinking water</subject><subject>exponential model</subject><subject>Exposure</subject><subject>Eye Infections, Parasitic - diagnosis</subject><subject>Health risks</subject><subject>Inoculation</subject><subject>Likelihood Functions</subject><subject>Mice</subject><subject>microbial risk assessment</subject><subject>Microorganisms</subject><subject>Models, Statistical</subject><subject>Nasal sprays</subject><subject>Nervous system</subject><subject>Pathogens</subject><subject>Rats</subject><subject>Risk assessment</subject><subject>Risk Assessment - methods</subject><subject>Virulence</subject><subject>Water - parasitology</subject><subject>Water distribution</subject><subject>Water distribution systems</subject><subject>Water engineering</subject><issn>0272-4332</issn><issn>1539-6924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLw0AUhQdRbK1u_AEScCNC6p1HMs2y1lehIlTFZZgkNzaSZOJMgvTfO22qCxfezT2Lj8PhI-SUwpi6uzKFVWPKQ-B7ZEgDHvlhxMQ-GQKTzBecswE5svYDgAIE8pAMOAchJzQYkutHnWFZ1O9eu0LvRlv0lmgbXW9DqdrCxVXReDr33lSLJtGmRm-aqrpdqUpjoo7JQa5Kiye7PyKvd7cvswd_8XQ_n00XfupmcD-kWaqkoEmm0gRyZBPGmEqllIlkLIMcZJ7JkKJKJKBIqAxARUClEphxFvERueh7G6M_O7RtXBU2xbJUNerOxkwEEAYgKTj0_A_6oTtTu3WOmkgmROQmjchlT6VGW2swjxtTVMqsYwrxxmy8MRtvzTr4bFfZJRVmv-iPSgfQHvgqSlz_UxUv58_TvvQbUmWB_g</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Dean, Kara</creator><creator>Tamrakar, Sushil</creator><creator>Huang, Yin</creator><creator>Rose, Joan B.</creator><creator>Mitchell, Jade</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>7U9</scope><scope>8BJ</scope><scope>8FD</scope><scope>C1K</scope><scope>FQK</scope><scope>FR3</scope><scope>H94</scope><scope>JBE</scope><scope>JQ2</scope><scope>KR7</scope><scope>M7N</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>202101</creationdate><title>Modeling the Dose Response Relationship of Waterborne Acanthamoeba</title><author>Dean, Kara ; Tamrakar, Sushil ; Huang, Yin ; Rose, Joan B. ; Mitchell, Jade</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2723-61dca741bdacb0fe28222ac777b722d0f07fd761eab70e4b1750a9017a4ed3293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acanthamoeba</topic><topic>Acanthamoeba - pathogenicity</topic><topic>Amoeba</topic><topic>Animal research</topic><topic>Animals</topic><topic>beta‐Poisson model</topic><topic>Building design</topic><topic>Central nervous system</topic><topic>Central Nervous System Infections - diagnosis</topic><topic>Central Nervous System Infections - parasitology</topic><topic>Cornea</topic><topic>Corynebacterium</topic><topic>Death &amp; dying</topic><topic>Disease Models, Animal</topic><topic>dose response</topic><topic>Drinking water</topic><topic>exponential model</topic><topic>Exposure</topic><topic>Eye Infections, Parasitic - diagnosis</topic><topic>Health risks</topic><topic>Inoculation</topic><topic>Likelihood Functions</topic><topic>Mice</topic><topic>microbial risk assessment</topic><topic>Microorganisms</topic><topic>Models, Statistical</topic><topic>Nasal sprays</topic><topic>Nervous system</topic><topic>Pathogens</topic><topic>Rats</topic><topic>Risk assessment</topic><topic>Risk Assessment - methods</topic><topic>Virulence</topic><topic>Water - parasitology</topic><topic>Water distribution</topic><topic>Water distribution systems</topic><topic>Water engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dean, Kara</creatorcontrib><creatorcontrib>Tamrakar, Sushil</creatorcontrib><creatorcontrib>Huang, Yin</creatorcontrib><creatorcontrib>Rose, Joan B.</creatorcontrib><creatorcontrib>Mitchell, Jade</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>International Bibliography of the Social Sciences</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Risk analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dean, Kara</au><au>Tamrakar, Sushil</au><au>Huang, Yin</au><au>Rose, Joan B.</au><au>Mitchell, Jade</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Dose Response Relationship of Waterborne Acanthamoeba</atitle><jtitle>Risk analysis</jtitle><addtitle>Risk Anal</addtitle><date>2021-01</date><risdate>2021</risdate><volume>41</volume><issue>1</issue><spage>79</spage><epage>91</epage><pages>79-91</pages><issn>0272-4332</issn><eissn>1539-6924</eissn><abstract>This study developed dose response models for determining the probability of eye or central nervous system infections from previously conducted studies using different strains of Acanthamoeba spp. The data were a result of animal experiments using mice and rats exposed corneally and intranasally to the pathogens. The corneal inoculations of Acanthamoeba isolate Ac 118 included varied amounts of Corynebacterium xerosis and were best fit by the exponential model. Virulence increased with higher levels of C. xerosis. The Acanthamoeba culbertsoni intranasal study with death as an endpoint of response was best fit by the beta‐Poisson model. The HN‐3 strain of A. castellanii was studied with an intranasal exposure and three different endpoints of response. For all three studies, the exponential model was the best fit. A model based on pooling data sets of the intranasal exposure and death endpoint resulted in an LD50 of 19,357 amebae. The dose response models developed in this study are an important step towards characterizing the risk associated with free‐living amoeba like Acanthamoeba in drinking water distribution systems. Understanding the human health risk posed by free‐living amoeba will allow for quantitative microbial risk assessments that support building design decisions to minimize opportunities for pathogen growth and survival.</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>33047815</pmid><doi>10.1111/risa.13603</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0272-4332
ispartof Risk analysis, 2021-01, Vol.41 (1), p.79-91
issn 0272-4332
1539-6924
language eng
recordid cdi_proquest_miscellaneous_2450650710
source MEDLINE; Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete
subjects Acanthamoeba
Acanthamoeba - pathogenicity
Amoeba
Animal research
Animals
beta‐Poisson model
Building design
Central nervous system
Central Nervous System Infections - diagnosis
Central Nervous System Infections - parasitology
Cornea
Corynebacterium
Death & dying
Disease Models, Animal
dose response
Drinking water
exponential model
Exposure
Eye Infections, Parasitic - diagnosis
Health risks
Inoculation
Likelihood Functions
Mice
microbial risk assessment
Microorganisms
Models, Statistical
Nasal sprays
Nervous system
Pathogens
Rats
Risk assessment
Risk Assessment - methods
Virulence
Water - parasitology
Water distribution
Water distribution systems
Water engineering
title Modeling the Dose Response Relationship of Waterborne Acanthamoeba
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A42%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Dose%20Response%20Relationship%20of%20Waterborne%20Acanthamoeba&rft.jtitle=Risk%20analysis&rft.au=Dean,%20Kara&rft.date=2021-01&rft.volume=41&rft.issue=1&rft.spage=79&rft.epage=91&rft.pages=79-91&rft.issn=0272-4332&rft.eissn=1539-6924&rft_id=info:doi/10.1111/risa.13603&rft_dat=%3Cproquest_cross%3E2450650710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2487244972&rft_id=info:pmid/33047815&rfr_iscdi=true