Modeling the Dose Response Relationship of Waterborne Acanthamoeba

This study developed dose response models for determining the probability of eye or central nervous system infections from previously conducted studies using different strains of Acanthamoeba spp. The data were a result of animal experiments using mice and rats exposed corneally and intranasally to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Risk analysis 2021-01, Vol.41 (1), p.79-91
Hauptverfasser: Dean, Kara, Tamrakar, Sushil, Huang, Yin, Rose, Joan B., Mitchell, Jade
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study developed dose response models for determining the probability of eye or central nervous system infections from previously conducted studies using different strains of Acanthamoeba spp. The data were a result of animal experiments using mice and rats exposed corneally and intranasally to the pathogens. The corneal inoculations of Acanthamoeba isolate Ac 118 included varied amounts of Corynebacterium xerosis and were best fit by the exponential model. Virulence increased with higher levels of C. xerosis. The Acanthamoeba culbertsoni intranasal study with death as an endpoint of response was best fit by the beta‐Poisson model. The HN‐3 strain of A. castellanii was studied with an intranasal exposure and three different endpoints of response. For all three studies, the exponential model was the best fit. A model based on pooling data sets of the intranasal exposure and death endpoint resulted in an LD50 of 19,357 amebae. The dose response models developed in this study are an important step towards characterizing the risk associated with free‐living amoeba like Acanthamoeba in drinking water distribution systems. Understanding the human health risk posed by free‐living amoeba will allow for quantitative microbial risk assessments that support building design decisions to minimize opportunities for pathogen growth and survival.
ISSN:0272-4332
1539-6924
DOI:10.1111/risa.13603