Mitochondrial architecture in cardiac myocytes depends on cell shape and matrix rigidity

Contraction of cardiac myocytes depends on energy generated by the mitochondria. During cardiac development and disease, the structure and function of the mitochondrial network in cardiac myocytes is known to remodel in concert with many other factors, including changes in nutrient availability, hem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular and cellular cardiology 2021-01, Vol.150, p.32-43
Hauptverfasser: Lyra-Leite, Davi M., Petersen, Andrew P., Ariyasinghe, Nethika R., Cho, Nathan, McCain, Megan L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Contraction of cardiac myocytes depends on energy generated by the mitochondria. During cardiac development and disease, the structure and function of the mitochondrial network in cardiac myocytes is known to remodel in concert with many other factors, including changes in nutrient availability, hemodynamic load, extracellular matrix (ECM) rigidity, cell shape, and maturation of other intracellular structures. However, the independent role of each of these factors on mitochondrial network architecture is poorly understood. In this study, we tested the hypothesis that cell aspect ratio (AR) and ECM rigidity regulate the architecture of the mitochondrial network in cardiac myocytes. To do this, we spin-coated glass coverslips with a soft, moderate, or stiff polymer. Next, we microcontact printed cell-sized rectangles of fibronectin with AR matching cardiac myocytes at various developmental or disease states onto the polymer surface. We then cultured neonatal rat ventricular myocytes on the patterned surfaces and used confocal microscopy and image processing techniques to quantify sarcomeric α-actinin volume, nucleus volume, and mitochondrial volume, surface area, and size distribution. On some substrates, α-actinin volume increased with cell AR but was not affected by ECM rigidity. Nucleus volume was mostly uniform across all conditions. In contrast, mitochondrial volume increased with cell AR on all substrates. Furthermore, mitochondrial surface area to volume ratio decreased as AR increased on all substrates. Large mitochondria were also more prevalent in cardiac myocytes with higher AR. For select AR, mitochondria were also smaller as ECM rigidity increased. Collectively, these results suggest that mitochondrial architecture in cardiac myocytes is strongly influenced by cell shape and moderately influenced by ECM rigidity. These data have important implications for understanding the factors that impact metabolic performance during heart development and disease. [Display omitted] •As cardiac myocytes elongate, the mitochondrial network becomes larger and more fused.•Mitochondria are fragmented in myocytes with pathological shapes on rigid matrices.•Mitochondria in myocytes with physiological shapes are resilient to matrix rigidity.
ISSN:0022-2828
1095-8584
DOI:10.1016/j.yjmcc.2020.10.004