Epigenetic memory: gene writer, eraser and homocysteine

Naturally chromatin remodeling is highly organized, consisting of histone acetylation (opening/relaxation of the compact chromatin structure), DNA methylation (inhibition of the gene expression activity) and sequence rearrangement by shifting. All this is essentially required for proper “in-printing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular biochemistry 2021-02, Vol.476 (2), p.507-512
Hauptverfasser: Tyagi, Suresh C., Stanisic, Dragana, Singh, Mahavir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Naturally chromatin remodeling is highly organized, consisting of histone acetylation (opening/relaxation of the compact chromatin structure), DNA methylation (inhibition of the gene expression activity) and sequence rearrangement by shifting. All this is essentially required for proper “in-printing and off-printing” of genes thus ensuring the epigenetic memory process. Any imbalance in ratios of DNA methyltransferase (DNMT, gene writer), fat-mass obesity-associated protein (FTO, gene eraser) and product (function) homocysteine (Hcy) could lead to numerous diseases. Interestingly, a similar process also happens in stem cells during embryogenesis and development. Despite gigantic unsuccessful efforts undertaken thus far toward the conversion of a stem cell into a functional cardiomyocyte, there has been hardly any study that shows successful conversion of a stem cell into a multinucleated cardiomyocyte. We have shown nuclear hypertrophy during heart failure, however; the mechanism(s) of epigenetic memory, regulation of genes during fertilization, embryogenesis, development and during adulthood remain far from understanding. In addition, there may be a connection of aging, loosing of the memory leading to death, and presumably to reincarnation. This review highlights some of these pertinent issues facing the discipline of biology as a whole today.
ISSN:0300-8177
1573-4919
DOI:10.1007/s11010-020-03895-4