Zn2+ ions inhibit gene transcription following stimulation of the Ca2+ channels Cav1.2 and TRPM3
Zinc, a trace element, is necessary for the correct structure and function of many proteins. Therefore, Zn2+ has to be taken up by the cells, using specific Zn2+ transporters or Ca2+ channels. In this study, we have focused on two Ca2+ channels, the L-type voltage-gated Cav1.2 channel and the transi...
Gespeichert in:
Veröffentlicht in: | Metallomics 2020-11, Vol.12 (11), p.1735-1747 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Zinc, a trace element, is necessary for the correct structure and function of many proteins. Therefore, Zn2+ has to be taken up by the cells, using specific Zn2+ transporters or Ca2+ channels. In this study, we have focused on two Ca2+ channels, the L-type voltage-gated Cav1.2 channel and the transient receptor potential channel TRPM3. Stimulation of either channel induces an intracellular signaling cascade leading to the activation of the transcription factor AP-1. The influx of Ca2+ ions into the cytoplasm is essential for this activity. We asked whether extracellular Zn2+ ions affect Cav1.2 or TRPM3-induced gene transcription following stimulation of the channels. The results show that extracellular Zn2+ ions reduced the activation of AP-1 by more than 80% following stimulation of either voltage-gated Cav1.2 channels or TRPM3 channels. Experiments performed with cells maintained in Ca2+-free medium revealed that Zn2+ ions cannot replace Ca2+ ions in inducing gene transcription via stimulation of Cav1.2 and TRPM3 channels. Re-addition of Ca2+ ions to the cell culture medium, however, restored the ability of these Ca2+ channels to induce a signaling cascade leading to the activation of AP-1. Secretory cells, including neurons and pancreatic β-cells, release Zn2+ ions during exocytosis. We propose that the released Zn2+ ions function as a negative feedback loop for stimulus-induced exocytosis by inhibiting Ca2+ channel signaling. |
---|---|
ISSN: | 1756-5901 1756-591X |
DOI: | 10.1039/d0mt00180e |