miR-4286 is Involved in Connections Between IGF-1 and TGF-β Signaling for the Mesenchymal Transition and Invasion by Glioblastomas

The insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β signal pathways are both recognized as important in regulating cancer prognosis, such as the epithelial-to-mesenchymal transition (EMT) and cell invasion. However, cross-talk between these two signal pathways in glioblasto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular and molecular neurobiology 2022-04, Vol.42 (3), p.791-806
Hauptverfasser: Ho, Kuo-Hao, Chen, Peng-Hsu, Shih, Chwen-Ming, Lee, Yi-Ting, Cheng, Chia-Hsiung, Liu, Ann-Jeng, Lee, Chin-Cheng, Chen, Ku-Chung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The insulin-like growth factor (IGF)-1 and transforming growth factor (TGF)-β signal pathways are both recognized as important in regulating cancer prognosis, such as the epithelial-to-mesenchymal transition (EMT) and cell invasion. However, cross-talk between these two signal pathways in glioblastoma multiforme (GBM) is still unclear. In the present study, by analyzing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GSE) 4412, GBM patients with higher IGF-1 levels exhibited poorer survival. Genes positively correlated with IGF-1 were enriched in EMT and TGF-β signal pathways. IGF-1 treatment enhanced mesenchymal marker expressions and GBM cell invasion. A significant positive correlation was observed for IGF-1 with TGF-β1 (TGFB1) or TGF-β receptor 2 (TGFBR2), both of which participate in TGF-β signaling and are risk genes in the GBM process. IGF-1 stimulation promoted both TGFB1 and TGFBR2 expressions. LY2157299, a TGF-β signaling inhibitor, attenuated IGF-1-enhanced GBM cell invasion and mesenchymal transition. By analyzing IGF-1-regulated microRNA (miR) profiles, miR-4286 was found to be significantly downregulated in IGF-1-treated cells and could be targeted to both TGFB1 and TGFBR2 . Overexpression of miR-4286 significantly attenuated expressions of the IGF-1-mediated mesenchymal markers, TGFB1 and TGFBR2. Using kinase inhibitors, only U0126 treatment showed an inhibitory effect on IGF-1-reduced miR-4286 and IGF-1-induced TGFB1/TGFBR2 expressions, suggesting that MEK/ERK signaling is involved in the IGF-1/miR-4286/TGF-β signaling axis. Finally, our results suggested that miR-4286 might act as a tumor suppressive microRNA in inhibiting IGF-1-enhanced GBM cell invasion. In conclusion, IGF-1 is connected to TGF-β signaling in regulating the mesenchymal transition and cell invasion of GBM through inhibition of miR-4286. Our findings provide new directions and mechanisms for exploring GBM progression.
ISSN:0272-4340
1573-6830
DOI:10.1007/s10571-020-00977-1