Gene regulation inference from single-cell RNA-seq data with linear differential equations and velocity inference
Abstract Motivation Single-cell RNA sequencing (scRNA-seq) offers new possibilities to infer gene regulatory network (GRNs) for biological processes involving a notion of time, such as cell differentiation or cell cycles. It also raises many challenges due to the destructive measurements inherent to...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2020-09, Vol.36 (18), p.4774-4780 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Motivation
Single-cell RNA sequencing (scRNA-seq) offers new possibilities to infer gene regulatory network (GRNs) for biological processes involving a notion of time, such as cell differentiation or cell cycles. It also raises many challenges due to the destructive measurements inherent to the technology.
Results
In this work, we propose a new method named GRISLI for de novo GRN inference from scRNA-seq data. GRISLI infers a velocity vector field in the space of scRNA-seq data from profiles of individual cells, and models the dynamics of cell trajectories with a linear ordinary differential equation to reconstruct the underlying GRN with a sparse regression procedure. We show on real data that GRISLI outperforms a recently proposed state-of-the-art method for GRN reconstruction from scRNA-seq data.
Availability and implementation
The MATLAB code of GRISLI is available at: https://github.com/PCAubin/GRISLI.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btaa576 |