External Validation of a Multiparametric Magnetic Resonance Imaging–based Nomogram for the Prediction of Extracapsular Extension and Seminal Vesicle Invasion in Prostate Cancer Patients Undergoing Radical Prostatectomy

The nomogram reported by Gandaglia et al (The key combined value of multiparametric magnetic resonance imaging, and magnetic resonance imaging-targeted and concomitant systematic biopsies for the prediction of adverse pathological features in prostate cancer patients undergoing radical prostatectomy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European urology 2021-02, Vol.79 (2), p.180-185
Hauptverfasser: Diamand, Romain, Ploussard, Guillaume, Roumiguié, Mathieu, Oderda, Marco, Benamran, Daniel, Fiard, Gaelle, Quackels, Thierry, Assenmacher, Grégoire, Simone, Giuseppe, Van Damme, Julien, Malavaud, Bernard, Iselin, Christophe, Descotes, Jean-Luc, Roche, Jean-Baptiste, Peltier, Alexandre, Roumeguère, Thierry, Albisinni, Simone
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The nomogram reported by Gandaglia et al (The key combined value of multiparametric magnetic resonance imaging, and magnetic resonance imaging-targeted and concomitant systematic biopsies for the prediction of adverse pathological features in prostate cancer patients undergoing radical prostatectomy. Eur Urol 2020;77:733–41) predicting extracapsular extension (ECE) or seminal vesicle invasion (SVI) has been developed using multiparametric magnetic resonance imaging (MRI) parameters and MRI-targeted biopsy. We aimed to validate this nomogram externally by analyzing 566 patients harboring prostate cancer diagnosed on MRI-targeted biopsy followed by radical prostatectomy. At final pathology, 37% and 12% patients had ECE and SVI, respectively. Performance of the nomogram, in comparison with the Memorial Sloan Kettering Cancer Center (MSKCC) model and Partin tables, was evaluated using discrimination, calibration, and decision curve analysis. Regarding ECE prediction, the nomogram showed higher discrimination (71.8% vs 69.8%, p = 0.3 and 71.8% vs 61.3%, p 
ISSN:0302-2838
1873-7560
DOI:10.1016/j.eururo.2020.09.037