Dopant‐Driven Positive Reinforcement in Ex‐Solution Process: New Strategy to Develop Highly Capable and Durable Catalytic Materials
The ex‐solution phenomenon, a central platform for growing metal nanoparticles on the surface of host oxides in real time with high durability and a fine distribution, has recently been applied to various scientific and industrial fields, such as catalysis, sensing, and renewable energy. However, th...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-11, Vol.32 (46), p.e2003983-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 46 |
container_start_page | e2003983 |
container_title | Advanced materials (Weinheim) |
container_volume | 32 |
creator | Jang, Ji‐Soo Kim, Jun Kyu Kim, Kyeounghak Jung, Wan‐Gil Lim, Chaesung Kim, Sangwoo Kim, Dong‐Ha Kim, Bong‐Joong Han, Jeong Woo Jung, WooChul Kim, Il‐Doo |
description | The ex‐solution phenomenon, a central platform for growing metal nanoparticles on the surface of host oxides in real time with high durability and a fine distribution, has recently been applied to various scientific and industrial fields, such as catalysis, sensing, and renewable energy. However, the high‐temperature processing required for ex‐solutions (>700 °C) limits the applicable material compositions and has hindered advances in this technique. Here, an unprecedented approach is reported for low‐temperature particle ex‐solution on important nanoscale binary oxides. WO3 with a nanosheet structure is selected as the parent oxide, and Ir serves as the active metal species that produces the ex‐solved metallic particles. Importantly, Ir doping facilitates a phase transition in the WO3 bulk lattice, which further promotes Ir ex‐solution at the oxide surface and eventually enables the formation of Ir particles ( |
doi_str_mv | 10.1002/adma.202003983 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2447836240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447836240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3893-32cd42f19c2dfdeadc86acace6b737174f4a69ae298034f6fa167f7e383d743</originalsourceid><addsrcrecordid>eNqFkT1vFDEQhi0EEkegpbZEQ7OHv867pjvdBoKUAOLoVxPvbHDkWy-2N2E7Olp-I78Eh0Mg0VDNWzzPzEgvIU85W3PGxAvoD7AWTDAmTSPvkRXfCF4pZjb3yYoZuamMVs1D8iila8aY0UyvyLc2TDDmH1-_t9Hd4Ejfh-RySfQDunEI0eIBx0zdSE-_FGof_JxdKFwMFlN6Sd_iLd3nCBmvFpoDbfEGfZjombv65Be6gwkuPVIYe9rO8VfeQQa_ZGfpRdGiA58ekwdDGfjk9zwh-1enH3dn1fm712922_PKysbISgrbKzFwY0U_9Ai9bTRYsKgva1nzWg0KtAEUpmFSDXoAruuhRtnIvlbyhDw_bp1i-Dxjyt3BJYvew4hhTp1Qqm6kFooV9Nk_6HWY41h-K5TmjDflXKHWR8rGkFLEoZuiO0BcOs66u1a6u1a6P60UwRyFW-dx-Q_dbduL7V_3JwU1lJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2461018717</pqid></control><display><type>article</type><title>Dopant‐Driven Positive Reinforcement in Ex‐Solution Process: New Strategy to Develop Highly Capable and Durable Catalytic Materials</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Jang, Ji‐Soo ; Kim, Jun Kyu ; Kim, Kyeounghak ; Jung, Wan‐Gil ; Lim, Chaesung ; Kim, Sangwoo ; Kim, Dong‐Ha ; Kim, Bong‐Joong ; Han, Jeong Woo ; Jung, WooChul ; Kim, Il‐Doo</creator><creatorcontrib>Jang, Ji‐Soo ; Kim, Jun Kyu ; Kim, Kyeounghak ; Jung, Wan‐Gil ; Lim, Chaesung ; Kim, Sangwoo ; Kim, Dong‐Ha ; Kim, Bong‐Joong ; Han, Jeong Woo ; Jung, WooChul ; Kim, Il‐Doo</creatorcontrib><description>The ex‐solution phenomenon, a central platform for growing metal nanoparticles on the surface of host oxides in real time with high durability and a fine distribution, has recently been applied to various scientific and industrial fields, such as catalysis, sensing, and renewable energy. However, the high‐temperature processing required for ex‐solutions (>700 °C) limits the applicable material compositions and has hindered advances in this technique. Here, an unprecedented approach is reported for low‐temperature particle ex‐solution on important nanoscale binary oxides. WO3 with a nanosheet structure is selected as the parent oxide, and Ir serves as the active metal species that produces the ex‐solved metallic particles. Importantly, Ir doping facilitates a phase transition in the WO3 bulk lattice, which further promotes Ir ex‐solution at the oxide surface and eventually enables the formation of Ir particles (<3 nm) at temperatures as low as 300 °C. Low‐temperature ex‐solution effectively inhibits the agglomeration of WO3 sheets while maintaining well‐dispersed ex‐solved particles. Furthermore, the Ir‐decorated WO3 sheets show excellent durability and H2S selectivity when used as sensing materials, suggesting that this is a generalizable synthetic strategy for preparing highly robust heterogeneous catalysts for a variety of applications.
The in situ growth of Ir nanoparticles on a binary oxide as a new class in ex‐solution phenomena is described. The Ir nanoparticles are uniformly anchored on WO3 host oxides and their formation mechanism is demonstrated by in situ analysis and simulations. The Ir‐catalyst‐loaded WO3 shows extremely high selectivity to H2S with outstanding stability.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202003983</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>binary oxides ; Catalysis ; catalysts, ex‐solution ; Durability ; host oxides ; Hydrogen sulfide ; Materials science ; metal nanoparticles ; Metal particles ; Nanoparticles ; Phase transitions ; Selectivity ; Sheets ; Tungsten oxides</subject><ispartof>Advanced materials (Weinheim), 2020-11, Vol.32 (46), p.e2003983-n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3893-32cd42f19c2dfdeadc86acace6b737174f4a69ae298034f6fa167f7e383d743</citedby><cites>FETCH-LOGICAL-c3893-32cd42f19c2dfdeadc86acace6b737174f4a69ae298034f6fa167f7e383d743</cites><orcidid>0000-0001-6018-7231 ; 0000-0002-9970-2218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202003983$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202003983$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Jang, Ji‐Soo</creatorcontrib><creatorcontrib>Kim, Jun Kyu</creatorcontrib><creatorcontrib>Kim, Kyeounghak</creatorcontrib><creatorcontrib>Jung, Wan‐Gil</creatorcontrib><creatorcontrib>Lim, Chaesung</creatorcontrib><creatorcontrib>Kim, Sangwoo</creatorcontrib><creatorcontrib>Kim, Dong‐Ha</creatorcontrib><creatorcontrib>Kim, Bong‐Joong</creatorcontrib><creatorcontrib>Han, Jeong Woo</creatorcontrib><creatorcontrib>Jung, WooChul</creatorcontrib><creatorcontrib>Kim, Il‐Doo</creatorcontrib><title>Dopant‐Driven Positive Reinforcement in Ex‐Solution Process: New Strategy to Develop Highly Capable and Durable Catalytic Materials</title><title>Advanced materials (Weinheim)</title><description>The ex‐solution phenomenon, a central platform for growing metal nanoparticles on the surface of host oxides in real time with high durability and a fine distribution, has recently been applied to various scientific and industrial fields, such as catalysis, sensing, and renewable energy. However, the high‐temperature processing required for ex‐solutions (>700 °C) limits the applicable material compositions and has hindered advances in this technique. Here, an unprecedented approach is reported for low‐temperature particle ex‐solution on important nanoscale binary oxides. WO3 with a nanosheet structure is selected as the parent oxide, and Ir serves as the active metal species that produces the ex‐solved metallic particles. Importantly, Ir doping facilitates a phase transition in the WO3 bulk lattice, which further promotes Ir ex‐solution at the oxide surface and eventually enables the formation of Ir particles (<3 nm) at temperatures as low as 300 °C. Low‐temperature ex‐solution effectively inhibits the agglomeration of WO3 sheets while maintaining well‐dispersed ex‐solved particles. Furthermore, the Ir‐decorated WO3 sheets show excellent durability and H2S selectivity when used as sensing materials, suggesting that this is a generalizable synthetic strategy for preparing highly robust heterogeneous catalysts for a variety of applications.
The in situ growth of Ir nanoparticles on a binary oxide as a new class in ex‐solution phenomena is described. The Ir nanoparticles are uniformly anchored on WO3 host oxides and their formation mechanism is demonstrated by in situ analysis and simulations. The Ir‐catalyst‐loaded WO3 shows extremely high selectivity to H2S with outstanding stability.</description><subject>binary oxides</subject><subject>Catalysis</subject><subject>catalysts, ex‐solution</subject><subject>Durability</subject><subject>host oxides</subject><subject>Hydrogen sulfide</subject><subject>Materials science</subject><subject>metal nanoparticles</subject><subject>Metal particles</subject><subject>Nanoparticles</subject><subject>Phase transitions</subject><subject>Selectivity</subject><subject>Sheets</subject><subject>Tungsten oxides</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkT1vFDEQhi0EEkegpbZEQ7OHv867pjvdBoKUAOLoVxPvbHDkWy-2N2E7Olp-I78Eh0Mg0VDNWzzPzEgvIU85W3PGxAvoD7AWTDAmTSPvkRXfCF4pZjb3yYoZuamMVs1D8iila8aY0UyvyLc2TDDmH1-_t9Hd4Ejfh-RySfQDunEI0eIBx0zdSE-_FGof_JxdKFwMFlN6Sd_iLd3nCBmvFpoDbfEGfZjombv65Be6gwkuPVIYe9rO8VfeQQa_ZGfpRdGiA58ekwdDGfjk9zwh-1enH3dn1fm712922_PKysbISgrbKzFwY0U_9Ai9bTRYsKgva1nzWg0KtAEUpmFSDXoAruuhRtnIvlbyhDw_bp1i-Dxjyt3BJYvew4hhTp1Qqm6kFooV9Nk_6HWY41h-K5TmjDflXKHWR8rGkFLEoZuiO0BcOs66u1a6u1a6P60UwRyFW-dx-Q_dbduL7V_3JwU1lJU</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Jang, Ji‐Soo</creator><creator>Kim, Jun Kyu</creator><creator>Kim, Kyeounghak</creator><creator>Jung, Wan‐Gil</creator><creator>Lim, Chaesung</creator><creator>Kim, Sangwoo</creator><creator>Kim, Dong‐Ha</creator><creator>Kim, Bong‐Joong</creator><creator>Han, Jeong Woo</creator><creator>Jung, WooChul</creator><creator>Kim, Il‐Doo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6018-7231</orcidid><orcidid>https://orcid.org/0000-0002-9970-2218</orcidid></search><sort><creationdate>20201101</creationdate><title>Dopant‐Driven Positive Reinforcement in Ex‐Solution Process: New Strategy to Develop Highly Capable and Durable Catalytic Materials</title><author>Jang, Ji‐Soo ; Kim, Jun Kyu ; Kim, Kyeounghak ; Jung, Wan‐Gil ; Lim, Chaesung ; Kim, Sangwoo ; Kim, Dong‐Ha ; Kim, Bong‐Joong ; Han, Jeong Woo ; Jung, WooChul ; Kim, Il‐Doo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3893-32cd42f19c2dfdeadc86acace6b737174f4a69ae298034f6fa167f7e383d743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>binary oxides</topic><topic>Catalysis</topic><topic>catalysts, ex‐solution</topic><topic>Durability</topic><topic>host oxides</topic><topic>Hydrogen sulfide</topic><topic>Materials science</topic><topic>metal nanoparticles</topic><topic>Metal particles</topic><topic>Nanoparticles</topic><topic>Phase transitions</topic><topic>Selectivity</topic><topic>Sheets</topic><topic>Tungsten oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Ji‐Soo</creatorcontrib><creatorcontrib>Kim, Jun Kyu</creatorcontrib><creatorcontrib>Kim, Kyeounghak</creatorcontrib><creatorcontrib>Jung, Wan‐Gil</creatorcontrib><creatorcontrib>Lim, Chaesung</creatorcontrib><creatorcontrib>Kim, Sangwoo</creatorcontrib><creatorcontrib>Kim, Dong‐Ha</creatorcontrib><creatorcontrib>Kim, Bong‐Joong</creatorcontrib><creatorcontrib>Han, Jeong Woo</creatorcontrib><creatorcontrib>Jung, WooChul</creatorcontrib><creatorcontrib>Kim, Il‐Doo</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Ji‐Soo</au><au>Kim, Jun Kyu</au><au>Kim, Kyeounghak</au><au>Jung, Wan‐Gil</au><au>Lim, Chaesung</au><au>Kim, Sangwoo</au><au>Kim, Dong‐Ha</au><au>Kim, Bong‐Joong</au><au>Han, Jeong Woo</au><au>Jung, WooChul</au><au>Kim, Il‐Doo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dopant‐Driven Positive Reinforcement in Ex‐Solution Process: New Strategy to Develop Highly Capable and Durable Catalytic Materials</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>32</volume><issue>46</issue><spage>e2003983</spage><epage>n/a</epage><pages>e2003983-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The ex‐solution phenomenon, a central platform for growing metal nanoparticles on the surface of host oxides in real time with high durability and a fine distribution, has recently been applied to various scientific and industrial fields, such as catalysis, sensing, and renewable energy. However, the high‐temperature processing required for ex‐solutions (>700 °C) limits the applicable material compositions and has hindered advances in this technique. Here, an unprecedented approach is reported for low‐temperature particle ex‐solution on important nanoscale binary oxides. WO3 with a nanosheet structure is selected as the parent oxide, and Ir serves as the active metal species that produces the ex‐solved metallic particles. Importantly, Ir doping facilitates a phase transition in the WO3 bulk lattice, which further promotes Ir ex‐solution at the oxide surface and eventually enables the formation of Ir particles (<3 nm) at temperatures as low as 300 °C. Low‐temperature ex‐solution effectively inhibits the agglomeration of WO3 sheets while maintaining well‐dispersed ex‐solved particles. Furthermore, the Ir‐decorated WO3 sheets show excellent durability and H2S selectivity when used as sensing materials, suggesting that this is a generalizable synthetic strategy for preparing highly robust heterogeneous catalysts for a variety of applications.
The in situ growth of Ir nanoparticles on a binary oxide as a new class in ex‐solution phenomena is described. The Ir nanoparticles are uniformly anchored on WO3 host oxides and their formation mechanism is demonstrated by in situ analysis and simulations. The Ir‐catalyst‐loaded WO3 shows extremely high selectivity to H2S with outstanding stability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202003983</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6018-7231</orcidid><orcidid>https://orcid.org/0000-0002-9970-2218</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2020-11, Vol.32 (46), p.e2003983-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2447836240 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | binary oxides Catalysis catalysts, ex‐solution Durability host oxides Hydrogen sulfide Materials science metal nanoparticles Metal particles Nanoparticles Phase transitions Selectivity Sheets Tungsten oxides |
title | Dopant‐Driven Positive Reinforcement in Ex‐Solution Process: New Strategy to Develop Highly Capable and Durable Catalytic Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A01%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dopant%E2%80%90Driven%20Positive%20Reinforcement%20in%20Ex%E2%80%90Solution%20Process:%20New%20Strategy%20to%20Develop%20Highly%20Capable%20and%20Durable%20Catalytic%20Materials&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Jang,%20Ji%E2%80%90Soo&rft.date=2020-11-01&rft.volume=32&rft.issue=46&rft.spage=e2003983&rft.epage=n/a&rft.pages=e2003983-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202003983&rft_dat=%3Cproquest_cross%3E2447836240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2461018717&rft_id=info:pmid/&rfr_iscdi=true |