Dopant‐Driven Positive Reinforcement in Ex‐Solution Process: New Strategy to Develop Highly Capable and Durable Catalytic Materials
The ex‐solution phenomenon, a central platform for growing metal nanoparticles on the surface of host oxides in real time with high durability and a fine distribution, has recently been applied to various scientific and industrial fields, such as catalysis, sensing, and renewable energy. However, th...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2020-11, Vol.32 (46), p.e2003983-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ex‐solution phenomenon, a central platform for growing metal nanoparticles on the surface of host oxides in real time with high durability and a fine distribution, has recently been applied to various scientific and industrial fields, such as catalysis, sensing, and renewable energy. However, the high‐temperature processing required for ex‐solutions (>700 °C) limits the applicable material compositions and has hindered advances in this technique. Here, an unprecedented approach is reported for low‐temperature particle ex‐solution on important nanoscale binary oxides. WO3 with a nanosheet structure is selected as the parent oxide, and Ir serves as the active metal species that produces the ex‐solved metallic particles. Importantly, Ir doping facilitates a phase transition in the WO3 bulk lattice, which further promotes Ir ex‐solution at the oxide surface and eventually enables the formation of Ir particles ( |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202003983 |