Synthesis of C-nucleoside analogues based on the pyrimidine skeleton for the formation of anti-parallel-type triplex DNA with a CG mismatch site
[Display omitted] The triplex DNA forming method is an attractive tool as a gene-targeting agent. Using artificial nucleoside analogues based on C-nucleoside, stable and selective triplex DNA can be formed in a specific region of duplex DNA, and its biotechnology applications will greatly expand. In...
Gespeichert in:
Veröffentlicht in: | Bioorganic & medicinal chemistry 2020-12, Vol.28 (23), p.115782-115782, Article 115782 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
The triplex DNA forming method is an attractive tool as a gene-targeting agent. Using artificial nucleoside analogues based on C-nucleoside, stable and selective triplex DNA can be formed in a specific region of duplex DNA, and its biotechnology applications will greatly expand. In this study, we designed and synthesized novel C-nucleoside analogues based on the pyrimidine skeleton, 3MeAP-d(Y-Cl) and 3MeAP-d(Y-H), capable of recognizing a CG mismatch site that is not recognized by natural nucleosides. After incorporating them into the oligonucleotides, their triplex forming abilities were evaluated by gel-shift assay. Although it was only one sequence, the 3′-GZG-5′ sequence, the stability of the CG mismatch site recognition was greatly improved compared with previous nucleoside analogues. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2020.115782 |