A computational investigation into the impact resistance of a precise finite element model derived from micro-CT data of a woodpecker's head

Numerical investigation into the impact-resistance of complex biological organs remains challenging because of the difficulties in obtaining accurate models and precise material properties. In this work, the elegance of a woodpecker's head, including a slender hyoid connected by a spherical hin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2020-12, Vol.112, p.104107-104107, Article 104107
Hauptverfasser: Zhang, Zhe, Xie, Yi Min, Li, Qing, Chen, Zeyao, Zhou, Shiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 104107
container_issue
container_start_page 104107
container_title Journal of the mechanical behavior of biomedical materials
container_volume 112
creator Zhang, Zhe
Xie, Yi Min
Li, Qing
Chen, Zeyao
Zhou, Shiwei
description Numerical investigation into the impact-resistance of complex biological organs remains challenging because of the difficulties in obtaining accurate models and precise material properties. In this work, the elegance of a woodpecker's head, including a slender hyoid connected by a spherical hinge and two revolute hinges, a long upper beak, a short lower beak, and an encephalocoele filled with viscoelastic brain substances, was obtained via a reaction-diffusion based imaging process on the micro-CT data. The material heterogeneity was fully considered in subsequent finite element analysis in LS-Dyna via categorizing the intensity into 53 groups and interpolating their properties from available data of rhamphotheca, hyoid, skull, and beak. Compared to a non-hyoid model, we found the hyoid helps to significantly alleviate the strain in the brain and restrain opposite velocity for maintaining structural stability, especially after impact. Numerical investigation also indicates that a longer upper beak is favorable in flatting the curve of impact force and improve structural crashworthiness.
doi_str_mv 10.1016/j.jmbbm.2020.104107
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2447314969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1751616120306561</els_id><sourcerecordid>2447314969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-560e52f1ff1042041e21b3c88645534cf7040b9471cc14554b5d03cf0d2eb3f03</originalsourceid><addsrcrecordid>eNp9UctuFDEQtBCIhMAXICHf4DJL-zGvA4doxUuKxCWcLY_dJl7G48H2LuIf-Gi8mcCRU7tbVd2uKkJeMtgxYN3bw-4QpinsOPDzRDLoH5FLNvRDA2yAx_Xdt6zpWMcuyLOcDwAdwDA8JReCj0PPeXdJfl9TE8N6LLr4uOiZ-uWEufhv933tSqTlDqkPqzaFJsw-F70YpNFRTdeExmekzi--IMUZAy6FhmhxphaTP6GlLsVAgzcpNvtbanXRG_lnjHZF8x3T60zvUNvn5InTc8YXD_WKfP3w_nb_qbn58vHz_vqmMaIdS9N2gC13zLmqmlfhyNkkzDB0sm2FNK4HCdMoe2YMqyM5tRaEcWA5TsKBuCJvtr1rij-OVa4KPhucZ71gPGbFpewFk2M3VqjYoPX3OSd0ak0-6PRLMVDnGNRB3cegzjGoLYbKevVw4DgFtP84f32vgHcbAKvMk8eksvFYbbW-OlqUjf6_B_4AXZiaiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2447314969</pqid></control><display><type>article</type><title>A computational investigation into the impact resistance of a precise finite element model derived from micro-CT data of a woodpecker's head</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Zhe ; Xie, Yi Min ; Li, Qing ; Chen, Zeyao ; Zhou, Shiwei</creator><creatorcontrib>Zhang, Zhe ; Xie, Yi Min ; Li, Qing ; Chen, Zeyao ; Zhou, Shiwei</creatorcontrib><description>Numerical investigation into the impact-resistance of complex biological organs remains challenging because of the difficulties in obtaining accurate models and precise material properties. In this work, the elegance of a woodpecker's head, including a slender hyoid connected by a spherical hinge and two revolute hinges, a long upper beak, a short lower beak, and an encephalocoele filled with viscoelastic brain substances, was obtained via a reaction-diffusion based imaging process on the micro-CT data. The material heterogeneity was fully considered in subsequent finite element analysis in LS-Dyna via categorizing the intensity into 53 groups and interpolating their properties from available data of rhamphotheca, hyoid, skull, and beak. Compared to a non-hyoid model, we found the hyoid helps to significantly alleviate the strain in the brain and restrain opposite velocity for maintaining structural stability, especially after impact. Numerical investigation also indicates that a longer upper beak is favorable in flatting the curve of impact force and improve structural crashworthiness.</description><identifier>ISSN: 1751-6161</identifier><identifier>EISSN: 1878-0180</identifier><identifier>DOI: 10.1016/j.jmbbm.2020.104107</identifier><identifier>PMID: 32987226</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Animals ; Beak ; Biological structures ; Biomechanical Phenomena ; Computational modelling ; Finite Element Analysis ; Head ; Impact simulation ; X-Ray Microtomography</subject><ispartof>Journal of the mechanical behavior of biomedical materials, 2020-12, Vol.112, p.104107-104107, Article 104107</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-560e52f1ff1042041e21b3c88645534cf7040b9471cc14554b5d03cf0d2eb3f03</citedby><cites>FETCH-LOGICAL-c359t-560e52f1ff1042041e21b3c88645534cf7040b9471cc14554b5d03cf0d2eb3f03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1751616120306561$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32987226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Xie, Yi Min</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Chen, Zeyao</creatorcontrib><creatorcontrib>Zhou, Shiwei</creatorcontrib><title>A computational investigation into the impact resistance of a precise finite element model derived from micro-CT data of a woodpecker's head</title><title>Journal of the mechanical behavior of biomedical materials</title><addtitle>J Mech Behav Biomed Mater</addtitle><description>Numerical investigation into the impact-resistance of complex biological organs remains challenging because of the difficulties in obtaining accurate models and precise material properties. In this work, the elegance of a woodpecker's head, including a slender hyoid connected by a spherical hinge and two revolute hinges, a long upper beak, a short lower beak, and an encephalocoele filled with viscoelastic brain substances, was obtained via a reaction-diffusion based imaging process on the micro-CT data. The material heterogeneity was fully considered in subsequent finite element analysis in LS-Dyna via categorizing the intensity into 53 groups and interpolating their properties from available data of rhamphotheca, hyoid, skull, and beak. Compared to a non-hyoid model, we found the hyoid helps to significantly alleviate the strain in the brain and restrain opposite velocity for maintaining structural stability, especially after impact. Numerical investigation also indicates that a longer upper beak is favorable in flatting the curve of impact force and improve structural crashworthiness.</description><subject>Animals</subject><subject>Beak</subject><subject>Biological structures</subject><subject>Biomechanical Phenomena</subject><subject>Computational modelling</subject><subject>Finite Element Analysis</subject><subject>Head</subject><subject>Impact simulation</subject><subject>X-Ray Microtomography</subject><issn>1751-6161</issn><issn>1878-0180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UctuFDEQtBCIhMAXICHf4DJL-zGvA4doxUuKxCWcLY_dJl7G48H2LuIf-Gi8mcCRU7tbVd2uKkJeMtgxYN3bw-4QpinsOPDzRDLoH5FLNvRDA2yAx_Xdt6zpWMcuyLOcDwAdwDA8JReCj0PPeXdJfl9TE8N6LLr4uOiZ-uWEufhv933tSqTlDqkPqzaFJsw-F70YpNFRTdeExmekzi--IMUZAy6FhmhxphaTP6GlLsVAgzcpNvtbanXRG_lnjHZF8x3T60zvUNvn5InTc8YXD_WKfP3w_nb_qbn58vHz_vqmMaIdS9N2gC13zLmqmlfhyNkkzDB0sm2FNK4HCdMoe2YMqyM5tRaEcWA5TsKBuCJvtr1rij-OVa4KPhucZ71gPGbFpewFk2M3VqjYoPX3OSd0ak0-6PRLMVDnGNRB3cegzjGoLYbKevVw4DgFtP84f32vgHcbAKvMk8eksvFYbbW-OlqUjf6_B_4AXZiaiw</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Zhang, Zhe</creator><creator>Xie, Yi Min</creator><creator>Li, Qing</creator><creator>Chen, Zeyao</creator><creator>Zhou, Shiwei</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202012</creationdate><title>A computational investigation into the impact resistance of a precise finite element model derived from micro-CT data of a woodpecker's head</title><author>Zhang, Zhe ; Xie, Yi Min ; Li, Qing ; Chen, Zeyao ; Zhou, Shiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-560e52f1ff1042041e21b3c88645534cf7040b9471cc14554b5d03cf0d2eb3f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Beak</topic><topic>Biological structures</topic><topic>Biomechanical Phenomena</topic><topic>Computational modelling</topic><topic>Finite Element Analysis</topic><topic>Head</topic><topic>Impact simulation</topic><topic>X-Ray Microtomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhe</creatorcontrib><creatorcontrib>Xie, Yi Min</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Chen, Zeyao</creatorcontrib><creatorcontrib>Zhou, Shiwei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zhe</au><au>Xie, Yi Min</au><au>Li, Qing</au><au>Chen, Zeyao</au><au>Zhou, Shiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A computational investigation into the impact resistance of a precise finite element model derived from micro-CT data of a woodpecker's head</atitle><jtitle>Journal of the mechanical behavior of biomedical materials</jtitle><addtitle>J Mech Behav Biomed Mater</addtitle><date>2020-12</date><risdate>2020</risdate><volume>112</volume><spage>104107</spage><epage>104107</epage><pages>104107-104107</pages><artnum>104107</artnum><issn>1751-6161</issn><eissn>1878-0180</eissn><abstract>Numerical investigation into the impact-resistance of complex biological organs remains challenging because of the difficulties in obtaining accurate models and precise material properties. In this work, the elegance of a woodpecker's head, including a slender hyoid connected by a spherical hinge and two revolute hinges, a long upper beak, a short lower beak, and an encephalocoele filled with viscoelastic brain substances, was obtained via a reaction-diffusion based imaging process on the micro-CT data. The material heterogeneity was fully considered in subsequent finite element analysis in LS-Dyna via categorizing the intensity into 53 groups and interpolating their properties from available data of rhamphotheca, hyoid, skull, and beak. Compared to a non-hyoid model, we found the hyoid helps to significantly alleviate the strain in the brain and restrain opposite velocity for maintaining structural stability, especially after impact. Numerical investigation also indicates that a longer upper beak is favorable in flatting the curve of impact force and improve structural crashworthiness.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>32987226</pmid><doi>10.1016/j.jmbbm.2020.104107</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1751-6161
ispartof Journal of the mechanical behavior of biomedical materials, 2020-12, Vol.112, p.104107-104107, Article 104107
issn 1751-6161
1878-0180
language eng
recordid cdi_proquest_miscellaneous_2447314969
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Beak
Biological structures
Biomechanical Phenomena
Computational modelling
Finite Element Analysis
Head
Impact simulation
X-Ray Microtomography
title A computational investigation into the impact resistance of a precise finite element model derived from micro-CT data of a woodpecker's head
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T00%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20computational%20investigation%20into%20the%20impact%20resistance%20of%20a%20precise%20finite%20element%20model%20derived%20from%20micro-CT%20data%20of%20a%20woodpecker's%20head&rft.jtitle=Journal%20of%20the%20mechanical%20behavior%20of%20biomedical%20materials&rft.au=Zhang,%20Zhe&rft.date=2020-12&rft.volume=112&rft.spage=104107&rft.epage=104107&rft.pages=104107-104107&rft.artnum=104107&rft.issn=1751-6161&rft.eissn=1878-0180&rft_id=info:doi/10.1016/j.jmbbm.2020.104107&rft_dat=%3Cproquest_cross%3E2447314969%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2447314969&rft_id=info:pmid/32987226&rft_els_id=S1751616120306561&rfr_iscdi=true