A computational investigation into the impact resistance of a precise finite element model derived from micro-CT data of a woodpecker's head
Numerical investigation into the impact-resistance of complex biological organs remains challenging because of the difficulties in obtaining accurate models and precise material properties. In this work, the elegance of a woodpecker's head, including a slender hyoid connected by a spherical hin...
Gespeichert in:
Veröffentlicht in: | Journal of the mechanical behavior of biomedical materials 2020-12, Vol.112, p.104107-104107, Article 104107 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Numerical investigation into the impact-resistance of complex biological organs remains challenging because of the difficulties in obtaining accurate models and precise material properties. In this work, the elegance of a woodpecker's head, including a slender hyoid connected by a spherical hinge and two revolute hinges, a long upper beak, a short lower beak, and an encephalocoele filled with viscoelastic brain substances, was obtained via a reaction-diffusion based imaging process on the micro-CT data. The material heterogeneity was fully considered in subsequent finite element analysis in LS-Dyna via categorizing the intensity into 53 groups and interpolating their properties from available data of rhamphotheca, hyoid, skull, and beak. Compared to a non-hyoid model, we found the hyoid helps to significantly alleviate the strain in the brain and restrain opposite velocity for maintaining structural stability, especially after impact. Numerical investigation also indicates that a longer upper beak is favorable in flatting the curve of impact force and improve structural crashworthiness. |
---|---|
ISSN: | 1751-6161 1878-0180 |
DOI: | 10.1016/j.jmbbm.2020.104107 |