Dynamic aberration correction via spatial light modulator (SLM) for femtosecond direct laser writing: towards spherical voxels
Optical aberrations are a type of optical defect of imaging systems that hinder femtosecond direct laser write machining by changing voxel size and aspect ratio in different sample depths. We present an approach of compensating such aberrations using a liquid crystal spatial light modulator (SLM). T...
Gespeichert in:
Veröffentlicht in: | Optics express 2020-09, Vol.28 (19), p.27850-27864 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Optical aberrations are a type of optical defect of imaging systems that hinder femtosecond direct laser write machining by changing voxel size and aspect ratio in different sample depths. We present an approach of compensating such aberrations using a liquid crystal spatial light modulator (SLM). Two methods for correcting are explored. They are based on backward ray tracing and Zernike polynomials. Experiments with a long focal distance lens ( F = 25 and 50 mm) and microscope objective (100x, 0.9 NA) have been conducted. Specifically, aberration-free structuring with voxels of a constant aspect ratio of 1-1.5 is carried out throughout a 1 mm thick sample. Results show potential in simplifying direct laser writing and enabling new architectures made possible by near-spherical voxels. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.397006 |