First Report of Neofusicoccum parvum Causing Leaf Spot on Geodorum eulophioides in China
Geodorum eulophioides Schltr. is a critically endangered orchid listed in the International Union for Conservation of Nature (IUCN) Red List of threatened species. At present, only two natural populations were found in China. It has important scientific and ornamental values because of its uniquenes...
Gespeichert in:
Veröffentlicht in: | Plant disease 2021-02, Vol.105 (2), p.486 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Geodorum eulophioides Schltr. is a critically endangered orchid listed in the International Union for Conservation of Nature (IUCN) Red List of threatened species. At present, only two natural populations were found in China. It has important scientific and ornamental values because of its uniqueness. During the summer of 2019, a black leaf spot disease occurred on G. eulophioides, in Yachang Orchid National Nature Reserve (E106°13'32″,N24°44'19″) in Guangxi province, China. More than 60% of leaves of these plants were infected. The disease symptoms initially appeared as small yellow circular spots, which enlarged into irregular brown spots (6 to 9 cm length and 3 to 5 cm width). In later stages of the disease development, the center of the spots became dark brown with a clear edge and surrounded by a yellow halo. In severe infections, the spots coalesced covering the entire leaf. Six symptomatic leaves were collected from three infected plants, surface sterilized in 75% ethanol for 15 s and 0.1% HgCl2 for 4 min, and subsequently washed three times with sterile water, then plated onto potato dextrose agar (PDA), and incubated at 28℃ for three days. Eighteen fungal cultures with similar morphological characteristics were obtained from the infected tissues. Colonies were initially white, then turned dark grey after nine days. To induce sporulation, isolates were grown on 2% water agar and incubated under UVA light at 28℃ for nine days. Three isolates were selected for morphological characterization. Conidia were hyaline, unicellular, nonseptate, ellipsoidal to fusiform, externally smooth, thin-walled, and ranged from 10.7 to 16.6 μm (avg. 13.8 μm) × 4.1 to 6.7 μm (avg. 5.1 μm) (n=50). The isolate DBL-1 was selected as a representative for molecular identification. Genomic DNA was extracted and used for PCR to amplify the rDNA internal transcribed spacer region (ITS), translation elongation factor 1-alpha gene (EF1-α), and beta-tubulin gene (TUB2), using the primer pairs ITS1/ITS4 (White et al., 1990), EF1-728F/EF1-986R(Alves et al. 2008;Carbone & Kohn, 1999), and T1/T2 (O'Donnell et al., 1997), respectively. The obtained ITS sequence (GenBank Accession No. MN918440), EF1-α sequence (MN963815), and TUB2 sequence (MN963816) showed >99% homology with several GenBank sequences of Neofusicoccum parvum (JX513636, KU997497 for ITS, KU997261, MH252401 for EF1-α, and KJ841779, MK412882 for TUB2, respectively). Based on morphological characteristics of the asexual mor |
---|---|
ISSN: | 0191-2917 1943-7692 |
DOI: | 10.1094/PDIS-03-20-0517-PDN |