Fast one-sided approximation with spline functions
For the approximation of functions, interpolation compromises approximation error for computational convenience. For a bounded interpolation operator the Lebesque inequality bounds the factor by which the interpolation differs from the best approximation available in the range of the operator. A com...
Gespeichert in:
Veröffentlicht in: | Journal of computational and applied mathematics 1987, Vol.18 (1), p.93-105 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the approximation of functions, interpolation compromises approximation error for computational convenience. For a bounded interpolation operator the Lebesque inequality bounds the factor by which the interpolation differs from the best approximation available in the range of the operator. A comparable process for one-sided approximation is not readily apparent. Methods are suggested for the computationally economical construction of one-sided spline approximation to large classes of functions, and criteria for comparing such approximation operators are investigated. Since the operators are generally nonlinear the Lebesque inequality is invalidated as an aid for comparing with the best one-sided approximation in the range of the operator, but comparable inequalities are shown to exist in some cases. |
---|---|
ISSN: | 0377-0427 1879-1778 |
DOI: | 10.1016/0377-0427(87)90058-6 |