Generalization of back-propagation to recurrent neural networks

An adaptive neural network with asymmetric connections is proposed that is related to the Hopfield (1984) network with graded neurons. The present back-propagation algorithm uses a recurrent generalization of the delta rule of Rumelhart et al. (1986) to adaptively modify the synaptic weights. The ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 1987-11, Vol.59 (19), p.2229-2232
1. Verfasser: Pineda, FJ
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An adaptive neural network with asymmetric connections is proposed that is related to the Hopfield (1984) network with graded neurons. The present back-propagation algorithm uses a recurrent generalization of the delta rule of Rumelhart et al. (1986) to adaptively modify the synaptic weights. The network is architecturally simpler than the master/slave network of Lapedes and Farber (1986), and it vectorizes naturally because the units are homogeneous. (R.R.)
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.59.2229