Generalization of back-propagation to recurrent neural networks
An adaptive neural network with asymmetric connections is proposed that is related to the Hopfield (1984) network with graded neurons. The present back-propagation algorithm uses a recurrent generalization of the delta rule of Rumelhart et al. (1986) to adaptively modify the synaptic weights. The ne...
Gespeichert in:
Veröffentlicht in: | Physical review letters 1987-11, Vol.59 (19), p.2229-2232 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An adaptive neural network with asymmetric connections is proposed that is related to the Hopfield (1984) network with graded neurons. The present back-propagation algorithm uses a recurrent generalization of the delta rule of Rumelhart et al. (1986) to adaptively modify the synaptic weights. The network is architecturally simpler than the master/slave network of Lapedes and Farber (1986), and it vectorizes naturally because the units are homogeneous. (R.R.) |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.59.2229 |