Enhanced Functionality of Dual-Gate Organic Transistors Based on Semiconducting/Insulating Polyblend-Induced Asymmetric Charge Modulation Layers

Dual-gate organic thin-film transistors (DG-OTFTs) with enhanced functionality, including large current enhancement behavior, highly efficient threshold voltage controllability, and self-contained dual-mode logic gate features, are reported. These DG-OTFTs are based on a semiconducting/insulating po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-10, Vol.12 (42), p.47763-47773
Hauptverfasser: Lin, Bo-Ren, Cheng, Horng-Long, Lin, Jia-Hui, Wu, Fu-Chiao, Wang, Yu-Wu, Chou, Wei-Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dual-gate organic thin-film transistors (DG-OTFTs) with enhanced functionality, including large current enhancement behavior, highly efficient threshold voltage controllability, and self-contained dual-mode logic gate features, are reported. These DG-OTFTs are based on a semiconducting/insulating polyblend-based active layer with asymmetric top and bottom charge modulation layers (atb-CMLs). The atb-CMLs are automatically generated through the preparation of multilayer stacks of phase-separated semiconducting poly­(3-hexylthiophene) (P3HT):insulating poly­(methylmethacrylate) (PMMA) polyblend layer, poly­(vinylidene fluoride) (PVDF) layer, and cross-linked-poly­(4-vinylphenol) (cPVP) layer. They consist of a thin PMMA bottom layer and an uneven-shaped PMMA:PVDF miscible mixture-based top layer. The presence of the polarizable insulating PMMA, PVDF, and PMMA:PVDF mixture regions causes the bottom and top CMLs to experience electrical polarization, which induces the dipole field to achieve efficient charge modulation functions in DG-OTFTs. Owing to the presence of atb-CMLs, the DG-OTFTs exhibit unprecedented electrical characteristics, such as the easy depletion of the bottom channel by the top gate potential. However, the top channel can work properly only when given a bottom gate potential (either positive or negative). Given these unusual electrical features, the design of the fundamental dual-mode logic gates (e.g., AND and OR gates) can be achieved with just one DG transistor. This finding opens an interesting direction for the preparation of DG-OTFTs with diverse operating modes and increasing functionality, thereby widening the application potential of such transistors.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c06301