Surface Modification of LiNi0.8 Co0.15 Al0.05 O2 Particles via Li3 PO4 Coating to Enable Aqueous Electrode Processing
The successful implementation of an aqueous-based electrode manufacturing process for nickel-rich cathode active materials is challenging due to their high water sensitivity. In this work, the surface of LiNi0.8 Co0.15 Al0.05 O2 (NCA) was modified with a lithium phosphate coating to investigate its...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2020-11, Vol.13 (22), p.5962-5971 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The successful implementation of an aqueous-based electrode manufacturing process for nickel-rich cathode active materials is challenging due to their high water sensitivity. In this work, the surface of LiNi0.8 Co0.15 Al0.05 O2 (NCA) was modified with a lithium phosphate coating to investigate its ability to protect the active material during electrode production. The results illustrate that the coating amount is crucial and a compromise has to be made between protection during electrode processing and sufficient electronic conductivity through the particle surface. Cells with water-based electrodes containing NCA with an optimized amount of lithium phosphate had a slightly lower specific discharge capacity than cells with conventional N-methyl-2-pyrrolidone-based electrodes. Nonetheless, the cells with optimized water-based electrodes could compete in terms of cycle life. |
---|---|
ISSN: | 1864-564X |
DOI: | 10.1002/cssc.202001907 |