Ultrahigh-Temperature Ceramic–Polymer-Derived SiOC Ceramic Composites for High-Performance Electromagnetic Interference Shielding

High-performance electromagnetic interference (EMI) shielding materials for a high-temperature harsh environment are highly required for electronics and aerospace applications. Here, a composite made of ultrahigh-temperature ceramic- and polymer-derived SiOC ceramic (PDC-SiOC) with high EMI shieldin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-10, Vol.12 (41), p.46254-46266
Hauptverfasser: Jia, Yujun, Ajayi, Tosin D, Roberts, Mark A, Chung, Ching-Chang, Xu, Chengying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-performance electromagnetic interference (EMI) shielding materials for a high-temperature harsh environment are highly required for electronics and aerospace applications. Here, a composite made of ultrahigh-temperature ceramic- and polymer-derived SiOC ceramic (PDC-SiOC) with high EMI shielding was reported for such applications. A total EMI shielding efficiency (SET) of 26.67 dB with a thickness of 0.6 mm at the Ka-band (26.5–40 GHz) was reported for ZrB2 fabricated by spark plasma sintering, which showed reflection-dominant shielding. A unique interface of t-ZrO2 was formed after the introduction of PDC-SiOC into ZrB2. This interface has better electrical conductivity than SiOC. The composites also displayed reflection-dominant shielding. Accordingly, the composite with a normalized ZrB2 fraction of 50% pyrolyzed at 1000 °C exhibited a significant SET of 72 dB (over 99.99999% shielded) with a thickness of 3 mm at the entire Ka-band. A maximum SET of 90.8 dB (over 99.9999999% shielded) was achieved with a thickness of 3 mm at around 39.7 GHz.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.0c08479