CRISPR/Cas gene therapy

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated enzyme (Cas) is a naturally occurring genome editing tool adopted from the prokaryotic adaptive immune defense system. Currently, CRISPR/Cas9‐based genome editing has been becoming one of the most promising tools fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cellular physiology 2021-04, Vol.236 (4), p.2459-2481
1. Verfasser: Zhang, Baohong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated enzyme (Cas) is a naturally occurring genome editing tool adopted from the prokaryotic adaptive immune defense system. Currently, CRISPR/Cas9‐based genome editing has been becoming one of the most promising tools for treating human genetic diseases, including cardiovascular diseases, neuro‐disorders, and cancers. As the quick modification of the CRISPR/Cas9 system, including delivery system, CRISPR/Cas9‐based gene therapy has been extensively studied in preclinic and clinic treatments. CRISPR/Cas genome editing is also a robust tool to create animal genetic models for studying and treating human genetic disorders, particularly diseases associated with point mutations. However, significant challenges also remain before CRISPR/Cas technology can be routinely employed in the clinic for treating different genetic diseases, which include toxicity and immune response of treated cells to CRISPR/Cas component, highly throughput delivery method, and potential off‐target impact. The off‐target effect is one of the major concerns for CRISPR/Cas9 gene therapy, more research should be focused on limiting this impact by designing high specific gRNAs and using high specificity of Cas enzymes. Modifying the CRISPR/Cas9 delivery method not only targets a specific tissue/cell but also potentially limits the off‐target impact. Currently, CRISPR/Cas9‐based genome editing has been becoming one of the most promising tools for treating human genetic diseases, including cardiovascular diseases, neuro‐disorders, and cancers. As the quick modification of the CRISPR/Cas9 system, including delivery system, CRISPR/Cas9‐based gene therapy has been extensively studied in preclinic and clinic treatments. However, significant challenges also remain before CRISPR/Cas technology can be routinely employed in the clinic for treating different genetic diseases, which include toxicity and immune response of treated cells to CRISPR/Cas component, highly throughput delivery method, and potential off‐target impact.
ISSN:0021-9541
1097-4652
DOI:10.1002/jcp.30064