Antibacterial calcium phosphate composite cements reinforced with silver-doped magnesium phosphate (newberyite) micro-platelets

This article demonstrates our efforts in developing and evaluating all-ceramic, biodegradable composites of calcium phosphate cements (CPCs) reinforced with silver (Ag)-doped magnesium phosphate (MgP) crystals. Two primary goals of this study were to 1) enhance CPC's poor mechanical properties...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the mechanical behavior of biomedical materials 2020-10, Vol.110, p.103934-103934, Article 103934
Hauptverfasser: Sikder, Prabaha, Coomar, Paritosh Perry, Mewborn, Jacob M., Bhaduri, Sarit B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article demonstrates our efforts in developing and evaluating all-ceramic, biodegradable composites of calcium phosphate cements (CPCs) reinforced with silver (Ag)-doped magnesium phosphate (MgP) crystals. Two primary goals of this study were to 1) enhance CPC's poor mechanical properties with micro-platelet reinforcement, and 2) impart antibacterial functionalities in composites with the aim to inhibit surgical site infections (SSI). The work embodies three novel features. First, as opposed to well-known reinforcements with whisker or fiber-like morphology, we explored micro-platelets for the first time as the strengthening phase in the CPC matrix. Second, in contrast to conventional polymeric or calcium phosphate (CaP) fibrous reinforcements, newberyite (NB, MgHPO4.3H2O) micro-platelets belonging to the less explored yet promising MgP family, were evaluated as reinforcements for the first time. Third, NB micro-platelets were doped with Ag+ ions (AgNB, Ag content: 2 wt%) for enhancing antibacterial functionalities. Results indicated that 1 wt% of AgNB micro-platelet incorporation in the CPC matrix enhanced the compressive and flexural strengths by 200% and 140% respectively as compared to the un-reinforced ones. Besides, antibacterial assays revealed effective bactericidal functionalities (>99% bacteria kill) of the AgNB reinforced CPCs against Escherichia coli. Finally, cytocompatibility studies confirmed favorable pre-osteoblast cell proliferation and differentiation in vitro. Hence, this effort was successful in developing a self-setting and injectable AgNB reinforced CPC composition with favorable mechanical and antibacterial properties. [Display omitted]
ISSN:1751-6161
1878-0180
DOI:10.1016/j.jmbbm.2020.103934